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Abstract

The idea that including more information in more dynamic and iterative ways is central to
the promise of the big data paradigm. The hope is that via new data sources, such as remote
sensors and mobile phones, the reliance on heavily simplified generalised functions for model
inputs will be erased. This trade between idealised and actual empirical data will be matched
with dynamic models which consider complexity at a fundamental level, inherently mirroring
the systems they are attempting to replicate. Cloud computing brings the possibility of doing all
of this, in less time than the simplified macro models of the past, thus enabling better answers
and at the time of critical decision making junctures.

This research was task driven - the question of high speed rail versus aviation led to an
investigation into the simplifications and assumptions that back up many of the commonly
held beliefs on the sustainability of different modes of transport. The literature ultimately
highlighted the need for context specific information; actual load factors, actual journey times
considering traffic/engineering works and so on.

Thus, rather than being explicitly an exercise in answering a specific question, a specific
question was used to drive the development of a tool which may hold promise for answering a
range of transportation related questions. The original contributions of this work are, firstly the
use of real-time data sources to quantify temporally and spatially dynamic network performance
metrics (eg. journey times on different transport models) and secondly to organise these data
sources in a framework which can handle the volume and type of the data and organise the data
in a way so that it is useful for the dynamic agent based modelling of future scenarios.
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Chapter 1

Introduction

Rapid urbanisation in developed and developing countries has continued globally. Cities are
increasingly becoming the arena within which the greatest opportunities and challenges to
true sustainable development can be found (C40, 2007). The role of city emissions in global
emissions is uncertain (from 30% to 80% depending on methodology (Satterthwaite, 2008))
but undoubtedly significant. The challenge of emissions allocation draws parallels to similar
methodological challenges when allocating the economic importance of cities at the global
and domestic scale. This economic dynamism of uncertain proportions is the key component
in the adoption of innovative technical solutions, in combination with behavioural change of
those who inhabit these cities (Stern, 2007). This is ever more apt as cities are also exhibiting
some of the most extreme and chronic symptoms related to unsustainable systems. These
challenges range from micro emissions, for example public health impact of particulate matter
(Walton et al., 2015a), to macro emissions, for example climate change related sudden weather
events (Rosenzweig et al., 2001), to housing shortages (Carpenter and Lees, 1995) and to
unemployment (Stern, 2007). This double edged situation of exposure and opportunity is
most evident in transportation. Cities exhibit some of the highest particulate matter emissions,
in geographic combination with the some of the highest population exposures. Yet, such
particulate matter emissions are primarily as a result of private vehicular emissions in areas
where the largest savings can be made in a modal shift to a mass transit system. The modal
shift away from individual vehicular transportation to a range of mass transit systems has long
been identified as a key method for reducing global and local emissions (Potter, 2003). The
growing political autonomy, agility, resources and scale of cities has arguably led to a shift in
influence away from the state level to the city level (Scott, 2002). As the trickle down has now
become the trickle up, the political landscape has begun to embrace the innovative methods put
forward and tested by cities. The magnitude of city related emissions and their local impact
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provides a common goal. The reduction of emissions is of significant importance to the cities
in isolation and all globally.

1.1 Research Motivation

The link between anthropogenic carbon emissions and climate change has been well doc-
umented in scientific literature. Despite such overwhelming evidence, policy makers have
been slow in getting consensus on how this challenge is to be tackled globally (Stern, 2007).
However, many countries have adopted domestic policies aimed at reducing their own domestic
carbon footprints. The 2008 Climate Change Act ties the UK into at least an 80% reduction,
from the 1990 baseline, of its net carbon account by 2050 (DECC, 2008). The aim of the
Act is to enable the UK to become a low carbon economy and thus avoid dangerous climate
change. As this target approaches, more efforts are being made to investigate how carbon can be
considered in decisions where it previously did not feature, in an attempt to make more carbon
sensitive strategic decisions. The challenges faced combined with the complex environments
poses a challenge for decision making tools.

This research joins a growing body of work which aims to make use of the new empirical
data sources which remove the need to fall back on generalised model inputs and new com-
putational models which allow for more information to be considered in more efficient ways.
The aims here are two fold - the first is to remove the reliance on standardised functions which
were historically required to handle uncertainty. Secondly, to make use of these data sources in
dynamic ways, paying respect to the complexity of the systems we are trying to model.

This research was motivated by a desire for a better understanding of the caveats that come
with transport planning. Mass transit systems have long been advocated as a means of reducing
emissions. Generally, this is true, but it may often be disingenuous when making unfair
comparisons at the stage of appraisal, usually due to the inaccuracy of assumptions surround
load factors and average speeds. It is clear that the interface between human decision making
and the physical and non-physical infrastructure leads to highly context specific behaviour,
which to date, is either completely unknown or unsatisfactorily averaged out in an attempt to
compare like with like.

Figure 1.1 illustrates the wider challenge associated with making decisions in complex
environments. The decision making paradox lies in the time and effort required to do analyses.
There is a need to have a sufficiently narrow scope to drive modelling, however, the very
narrowing down of this scope reduces the impact any modelling can have, in effect resulting
in the modelling being used as a tool to simply optimise the decisions already made using
"professional/expert opinions" and "gut instinct." Current understanding of complexity and
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human cognitive ability paints a dire picture for the ability of individuals to make sufficiently
robust decisions at these key junctures (Saaty, 1990).

Fig. 1.1 Scenario analysis - what happens versus what should happen (Dedring et al., 2017)

The value of fine resolution dynamic models has long been theorised, and recent computa-
tional advances have enabled for increasingly complex, bottom-up, fine resolution simulations
to be carried out over long time horizons at fine spatial and temporal resolution. This has hinted
at the possibility of connecting scales of what has been historically been fine resolution opera-
tional models and coarse resolution strategic models. The wave of new geospatially connected
devices has enabled the harvesting of fine resolution spatial and temporal data on travellers
and even the infrastructure itself. This crowd-sourced data can be used to inform dynamic
models with real-world and real-time data, bypassing the need for generalised functions and/or
expensive survey data. In this thesis, dynamic data sources such as the Google Directions API
data and Transport for London’s real-time data feeds are presented in a framework for London.

The use of a multi-modal graph data structure is presented and a series of analyses are
presented to illustrate the analytical value in using new parallel computing advances from
computer science. These methods enable the scaling of fine resolution scenario testing trans-
portation models and enable the support for a range of agent decision making methodologies.
Such data structures offer performance improvements in the storing of dynamic data that may
be manipulated in order to simulate local and global hard infrastructure scenarios alone or in
tandem with traditional policy or dynamic policy making scenarios.

Ultimately, this thesis presents a framework for using real-time data sources to inform a
transport Agent Based Model (ABM) for multi-modal decision making and route assignment.
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1.2 Thesis layout

• Chapter 2 - The role of transport in mitigating climate change, the state of the art in trans-
port modelling, emerging methodological trends and the context of new computational
methods.

• Chapter 3 - The use of new data sources to quantify network performance. specifically
for the road and public transport networks.

• Chapter 4 - A scalable multi-modal framework for agent based simulations on the
transport network.

• Chapter 5 - The case study of High Speed 1, the influence of capital emissions and hub
travel emissions.

• Chapter 6 - Conclusions and future work.



Chapter 2

Literature Review

2.1 Climate Change & Transport

The link between anthropogenic green house gas emissions and climate change has been
well documented in scientific literature. The Intergovernmental Panel on Climate Change
(IPCC) report that global emissions have risen consistently from 1970 to 2010 (citepeden-
hofer2014working, as shown in Figure 2.1. The transport sector globally produced 7.0 GtCO2eq
in 2010, equivalent to 23% of total CO2 emissions, an increase from the year before despite
technological advances in vehicle efficiency and policy adoption (Sims et al., 2014). These
emission trends have resulted in profound changes to planetary systems leading to significant
risk in the form of dangerous climate change. The risk to dangerous climate change is not
allocated equally, nor is the this risk allocated with respect to responsibility for it. The historic
paradigm of coupling fossil fuel driven energy consumption and economic growth (Holtz-Eakin
and Selden, 1995) still holds political ramifications for those nations who have not enjoyed the
liberty to pollute uninterrupted as many economically developed nations have. The difficulties
in accounting for risk and responsibility across, and even within, national borders has resulted
in a fragmented policy environment (Stern, 2007) (with some exceptions, such as the EU
Emissions Trading Scheme (EU, 2015)). This is epitomised in the debate over territorial or
consumptive accounting methods. As an illustration, the UK’s consumptive emissions are
35% larger than the territorial emissions for the year 2010 (GCB, 2013), equating to around
346 MtCO2e of a difference. Consistently and meaningfully drawing the boundaries of any
emissions analysis is problematic (Dodman, 2009).

Climate change is often described as a tragedy of the commons situation, a phrase coined by
Garett Hardin in 1968 (Hardin, 1968). He concluded that this type of problem was categorised
by individuals acting in rational self interest, whilst collectively these actions lead to a common
resource becoming over exploited. Each individual experiences short term gains from their
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Fig. 2.1 IPCC GHG Emissions (Edenhofer et al., 2014)

use of the resource, whilst the long term impacts, due to their collective actions, will have
significant time delay. The end result likely being a situation where all individuals suffer.

It is clear that such a situation requires political leadership in order to break the cycle.
Such political decisions do not occur in a vacuum and must be made with informed, trans-
parent, robust and considered information. Technological innovations must be partnered with
behavioural change, and promises of technical silver bullets (Brooks, 1987) should be treated
with great caution.

Reducing transportation emissions is particularly problematic for a range of reasons. It
is of fundamental importance to the current economic paradigm, connecting markets, goods
and people (Krugman, 2009). The demand for transport has been increasing, most especially
in developing nations and is even tied in many locations to unsustainable individual vehicle
ownership in high density areas (Sims et al., 2014). It does not lend itself easily to renewable
energy source replacement, as the (mostly centralised) energy sector does. The mobile nature
of many modes, such as aviation and motor vehicles, requires battery performance currently not
in existence. Great leaps have been made in recent years as a result of policy tools (DfT, 2015b)
and heavy investment by the likes of Tesla (tesla.com) and McLaren (mclaren.com). Despite
this, the energy density to weight issue persists, limiting the desired performance and range
offered in comparison to internal combustion engines. Mass public transport systems have
long been heralded as sustainable, low emissions solutions (Newman and Kenworthy, 1999),
(Norman et al., 2006). Yet, the construction of such projects requires large capital investments,
in terms of CO2, political capital and financial capital. Such investments must be made with
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strategic vision or risk the operational value (in terms of CO2 or finance) not recouping the
initial capital investment.

This chapter will explore the backdrop to the UK’s national emissions footprint and the role
the transportation sector has in this. It will move on to the need to consider the life cycle when
appraising the role of different transportation options. The exclusion of international travel
from the UK Climate Change Act framework leaves a policy gap that has the potential to undo
the hard earned projected savings in other sectors. The relative proximity, density and maturity
of the European High Speed Rail (HSR) Network offers opportunities for modal shift from
short-haul aviation to HSR. In an attempt to assess the emissions sustainability of HSR a range
of caveats that come with marketed sustainable ’low emissions’ transport modes are explored
and the sensitivity to factors such as capital carbon investment, energy supply and travel
demand are discussed. The importance of these factors is illustrated, existing methodological
shortcomings are discussed, and the requirements for a new tool are put forward.

2.1.1 UK Context

UK total (domestic) emissions were at 514.4 MtCO2e in 2014, with the energy sector at 31%
and the transport sector at 23% of this total (DECC, 2014). As with other developed economies,
the dominating energy sector is due to a dependence on CO2 based means of energy generation,
via the combustion of fossil fuels. A shift away from coal electricity generation and a warmer
winter resulted in the 7% saving made for energy emissions from years 2013 to 2014 (DECC,
2014).

The 2008 Climate Change Act ties the UK into at least an 80% reduction, from the 1990
baseline, of its net territorial CO2 emissions account by 2050 (DECC, 2008). The aim of the
Act is to enable the UK to become a low carbon economy and thus avoid dangerous climate
change. As this target approaches, more efforts are being made to investigate how CO2 can be
considered in decisions where it previously did not feature, in an attempt to make more CO2

sensitive strategic decisions.
Since the 2008 Climate Change Act, policy has progressed to first identify and secondly,

to plan how adjustments can be made to reach the overarching 80% reduction. The UK’s
electricity supply has been the focus of the majority of de-carbonisation spotlight, spearheaded
by the Department of Energy and Climate Change (DECC)1 .

Beyond the overarching Climate Change Act, the strategic CO2 potentials of the infrastruc-
ture sectors to meet the ambitious, legally binding emissions targets has been the focus of the
Infrastructure Carbon Review (GCB, 2013). The Infrastructure Carbon Review recognised

1As of July 2016, DECC is now a part of the Department for Business, Energy & Industrial Strategy
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the need to move from a territorial methodology (as per the Climate Change Act 2008) to
a consumption-based methodology and attempted to reconcile the two by considering inter-
national aviation and shipping on the basis of departing journeys (GCB, 2013). Despite the
Committee on Climate Change advising the UK Government to include international aviation
and shipping within the carbon budgets in 2012 (CCC, 2012), their inclusion has not yet
occurred. The off-shoring of such emissions is equally problematic in areas such as manu-
facturing as recent trends for most developed nations has involved the importing of goods
rather than the carbon intensive manufacturing of such goods domestically. The complexity of
globalisation and the modern markets, with the flow of capital, goods and people has resulted
in a highly connected and dependent relationships. It is thus understandable that there must
be methodological flexibility in policy making when considering emissions (Dodman, 2009).
Despite these recognised political and institutional barriers there is a strong need for care in
order to avoid distorted and goal seeking behaviour, as may occur when a very narrow or biased
methodology is employed.

The breakdown of UK transport emissions in 2010 is shown in Figure 2.2. These statistics
are based upon a modified consumption (departures only) based methodology. Cars are
responsible for the vast majority of transportation emissions, at 52%. This is followed by
international aviation (20%), road freight (11%), international shipping (6%), domestic shipping
(4%), bus (4%) , all rail (2%) and domestic aviation (1%).

Fig. 2.2 UK transport emissions by mode (GCB, 2013)
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These CO2 emissions occur simultaneously with non-CO2 emissions, such as that of fine
particulate matter. A King’s College London study found PM2.5 emissions in London were
estimated to have a total mortality burden of 3,537 deaths at typical ages and the NO2 mortality
burden was estimated at 5,879 deaths at typical ages in 2010 alone (Walton et al., 2015b).
The study attributed a short terms economic cost of £1.4 Billion and long term cost of up
to £3.7 Billion on these impacts. The public health impacts of such emissions have added a
new dimension to the drive for low emissions transport, most especially in the wake of recent
scandals and issues related to valuing CO2 emissions over particulate emissions and vice-
versa (DEFRA, 2007). The uncertainty related quantification issue of substantiating climate
change risks may be alleviated by using these shorter, more tangible public health impacts in
combination with longer term CO2 related metrics.

2.2 Life Cycle Analysis

Life Cycle Analysis (LCA) is a method used to quantify the associated environmental impacts
of the different stages through a life cycle. The motivation is to capture a truer reflection of
the range of impacts any given project may have over its existence. The importance of LCA
methods has grown in recent times (Chester et al., 2012), (Heijungs et al., 2013), (Heinonen
et al., 2013), as the literature has identified how narrow comparisons, such as that for only
the tail pipe emissions, can lead to distorted outcomes (Chester and Horvath, 2009a). In
the US, a study illustrated that a life cycle methodology for GHG emissions and energy
increased metrics by 63% for road vehicles, 155% for rail and 33% for aviation compared to a
standard tail pipe methodology (Chester and Horvath, 2009a). Chester also carried out similar
calculations for rail and found that considering the full life cycle increased emissions by 1.8
to 2.5 times over a tail pipe only analysis (Chester and Horvath, 2009b). Figure 2.3 presents
an addition from Miles et al. (2019) to Chester’s comparative study of 3 motor vehicles, 1
bus (on and off peak), 3 rail and 3 aircraft. A European passenger car (VW Up!) and a new
battery electric car (Kia e-Niro) are added for both single and 5 person occupancy 2 to update
Chester’s 2009 paper. With Chester’s original data the most evident conclusion is that personal
motor vehicles (Sedan, SUV and Pickup) have extremely large emission footprints (dominated
by operational emissions) when compared to the other modes, reinforcing the support for
mass transit systems over individual ones (Newman and Kenworthy, 1999). Secondly, the
importance of load factor is clear in the comparison between the urban bus on and off peak.

2 The kia e-Niro claims a 149Wh/km energy demand (Kia, 2019) and operational emissions were assumed on
UK national average grid emissions for 2016 (DECC, 2015). The VW Up! claims 95gCo2/km (VW, 2019). Both
were assumed to share the same insurance, maintenance and manufacturing costs as those in the original Chester
study.
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This makes a clear and important caveat to the value of mass transit systems in terms of CO2

emissions. If the load factor is not sufficient, the extra capacity on the vehicle may result in
worse performance than a personal motor vehicle. The addition of the European passenger
car illustrates the improvements possible in the personal car domain, with single occupancy
emissions at 185gCO2e / PKT and 37gCO2e / PKT when at full occupancy. This paints a more
optimistic picture and illustrates that his logic works both ways, ensuring/ indicating that a
personal car may not necessarily be an unsustainable, high emissions vehicle if it had high
load factor, is driven sensibly and has modern efficiency features. The data for modern electric
vehicles also shows clearly the opportunity to reduce emissions as a result of improved battery
technology and the de-carbonisation of the wider energy grid. This paired with a high load
factor reduces the emissions to below that of the shown rail lines and that of a full occupancy
bus. It is also shown that the use of complex pricing structures has diluted the large operational
emissions associated with aviation, improving the efficiency via high load factors and longer
travel distances (most especially for larger aircraft).

Fig. 2.3 CO2e / PKT for a range of modes and mode types from Miles et al. (2019) and Chester
and Horvath (2009b)

Such comparisons in the literature highlight the need to consider a range of factors when
planning for future transport provision. For the transportation sector, the life cycle analysis
requires consideration for the capital CO2, operational CO2 and land use impacts. In the
specific case of rail infrastructure, (Saxe et al., 2015a) conceptualised this as shown in Figure
2.4. This graphic illustrates the three components of a CO2 LCA for a rail infrastructure project:
the embodied CO2, the ridership and the urban form impacts.

The design life span of some infrastructure and their continued use in evolving ways, has
lead to consensus that the final grave stage of LCAs should be excluded for some infrastructure
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Fig. 2.4 Life cycle analyses considerations (Saxe et al., 2015a)

projects, and is generally only considered for rolling stock and the vehicles that utilise said
infrastructure. This is often referred to as a cradle-to-site methodology.

In order to consider the wide range of possible effects, there are two categories of boundary
conditions that must be defined. These are graphically illustrated in Figure 2.5 and discussed
below.

1. Temporal Boundary

The temporal boundary considers the different stages of the life cycle. Depending on the
analysis, a range of boundaries may be drawn, for example this may be cradle-to-grave,
cradle-to-gate or cradle-to-cradle. In the case of cradle-to-grave this would include the
mining of the raw materials, their transformation into a construction material, their use in
a structure, and finally their demolition and re-use.

2. Spatial Boundary

The spatial boundary considers the geographic influence of a project. As transport
infrastructure does not act in isolation, but as part of a highly complex system, drawing
the spatial boundary around a system is difficult and unintuitive due to network effects.
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Fig. 2.5 Temporal & spatial boundary of life cycle impacts

2.2.1 Temporal Boundaries

Capital CO2

Capital CO2 is the up-front investment made in order to construct the physical infrastructure,
for example a road, railway line; or the vehicle that utilises this infrastructure, for example
the rolling stock or car. Capital CO2 is defined in a similar way to that of capital financial
investment. LCA analyses have a long history in the manufacturing sector, where standardised
and well defined products lend themselves to simpler quantification using bill of quantity (BOQ)
data and standardised emission coefficients. This capital carbon consists of the embodied CO2,
the CO2 required in the creation of the materials; and the construction CO2, the CO2 emitted
when constructing the infrastructure from these materials.

1. Embodied CO2

Embodied CO2 consists of the energy utilised from raw material extraction to delivery
from manufacturer. The Inventory of Carbon and Energy contains data on over 200
materials and has been updated continuously with new and revised data since the original
release in 2007 (Jones and Hammond, 2008). For most products, the dominant proportion
of the CO2 footprint is found in the embodied energy invested to create the materials
themselves. For example, a study in Sweden found the embodied energy of a building
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accounted for 45% of total energy over a span of 50 years (Thormark, 2002). In building
construction this is especially influenced by concrete and steel. Steel and aluminium are
challenging as they are responsible for approximately 10% of global CO2 emissions, their
recycling rates are already at 60% and demand is projected to double by 2050 (Allwood
and Cullen, 2009). For illustration of the magnitude, the embodied CO2 emissions of a
170m viaduct equates to around 220,000 tCO2 (Hughes, 2012), equivalent to the yearly
emissions of around 90,000 cars in the UK (DfT, 2012b). By using BOQ data and
information on the sourcing of materials (for example virgin versus recycled) an accurate
image of embodied carbon may be quantified. Such analyses are often focussed on
embodied energy and thus often require a conversion to be made from embodied energy
to embodied CO2.

2. Construction CO2

The heterogeneity of infrastructure projects is in stark contrast to manufacturing products,
for which LCA’s have historically been used to assess. Each infrastructure project is
unique and exists in a complex system. Such projects do not lend themselves to easy
quantification and thus the proportional importance of embodied energy to construction
energy depends on the nature of the infrastructure itself, and construction site energy is
often excluded (Iddon and Firth, 2013) and can account for 5-30% of total emissions
(Chau et al., 2012a). A notable exception to the dominant embodied CO2 rule within civil
engineering projects is earthworks. Such projects may have little embodied emissions as
the material exists independently of the project and the dominant emissions is actually
be associated with the moving of the material through heavy plant or through the use of
lime modification to improve the structural properties of the soil (Hughes et al., 2011a).
The emissions are dependent on the fuel used by the plant (Sharrard et al., 2007) and
their age (Waris et al., 2014). In these cases, an embodied centric methodology would
underestimate significantly. Methodologies now exist for quantifying the emissions
arising as a result of earthworks, tunnel boring machines, and other heavy plant activities
on site.

For transportation projects a list of potential aspects3, as well as sources for data in the
literature, are provided in Table 2.1.

Operational CO2

Operational CO2 is the CO2 which is accrued due to the use of the infrastructure. This is easily
conceptualised as the tail-pipe emissions of vehicles such as trains or cars. Such emissions are

3This is a modified list of that used for the capital CO2 assessment of High Speed 2.
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Table 2.1 Specific examples of capital CO2 sources for a rail infrastructure project

Aspect Specific example Reference

Earthworks Embankments & cuttings (Hughes et al., 2011a)
Construction & demolition works Construction & demolition waste (Yeheyis et al., 2013)

Bridges & Viaducts Norwegian bridge (Dequidt, 2012)
Roads Inventory for road construction & use (Treloar et al., 2004)

Buildings Train station (Chester and Horvath, 2009b)
Geotechnical structure Retaining wall (Chau et al., 2012a)

Tunnels, portals & drive unders Rail tunnel (Morita et al., 2012)
Heavy plant Tunnel boring machine (Chau et al., 2012a)

Track Slab & ballasted track (UIC, 2011)
Rolling stock TGV Rolling stock (UIC, 2011)

a function of the energy supply to the vehicle, the conditions (surface gradient and quality),
the vehicle’s properties (weight, aerodynamic performance), the vehicles load (as a ratio of
demand to capacity) and external factors (such as variable speed due to traffic). There are a
range of influencing factors:

1. Vehicle properties

(a) weight

(b) rolling resistance

(c) aerodynamic performance

2. Vehicle energy supply

(a) Rail: diesel

(b) Rail: electricity (dependent on source)

(c) Vehicle: Internal combustion (diesel, petrol)

(d) Vehicle: electric (dependent on source)

(e) Vehicle: hybrid (combination)

3. Infrastructure conditions

(a) Gradient (dependent on vehicle weight)

(b) Road/rail condition (rolling resistance)

4. External factors
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(a) Traffic (speed & efficiency)

(b) Junctions, furniture (speed & efficiency)

5. Vehicle load

(a) Distribution of emissions

6. Maintenance

2.2.2 Spatial Boundaries

Beyond the impacts that propagate through time, there are those impacts which propagate
through space. These impacts are most clearly apparent on the immediate area but network
effects mean that they can be hard to predict and quantify in a meaningful way. These can
be categorised as network effects which influence other transport related infrastructure, such
as travel times on roads or demand on bus services; or land use effects through changes as a
result or reduced/increased connectivity.

Network Effects

The addition or removal of a piece of infrastructure or service on existing infrastructure will
result in changes to the local network. Intuitively, the addition of a road to an area should
reduce the demand on it and other local roads, resulting in improved journey times. However,
the addition of road capacity does little to reduce congestion, as short term journey time savings
induce new demand or simply move a bottleneck elsewhere (Duranton and Turner, 2011). The
uncertainty and complexity of such impacts remains poorly understood, where despite the
overwhelming evidence surrounding road capacity and congestion, many cities and countries
continue to attempt to remedy road congestion by adding capacity.

Urban Form Effects

There is a growing understanding of the relationships between transportation provision, real
estate development and urban form. Consider the comparison between Atlanta, USA and
Barcelona, Spain in 1990 made by Bertaud (Bertaud and Richardson, 2004) and shown in
Figure 2.6. In 1990 Bacelona and Atlanta had comparable populations, 2.8 million and 2.5
million respectively. However, Atlanta had a built-up area of 4,280km2 and Barcelona had
16km2. The link between transportation provision and urban form operates in both directions,
often reinforcing the status quo. In the situation of Atlana, the result has been the dominance
of personal car use as no investment resulted in poor public transport provision and due
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Fig. 2.6 Urban density: Atlanta versus Barcelona (Bertaud and Richardson, 2004)

to continued urban sprawl, such public transit investment increases in cost and savings are
challenging in the face of a lack of density.

Densification around transport hubs has the potential to lead to meaningful carbon emission
savings (Saxe, 2016) and there are now numerous examples of development policies being
proposed in tandem with mass public transport projects in order to reduce carbon emissions
(Kimball et al., 2013) and (Nahlik and Chester, 2014). In effect, this would be the extension
of the now popular Transit-Oriented Development (Cervero, 2004) paradigm to include CO2

emissions considerations.

2.3 Case Studies

In order to discuss the relative importance of these different factors, two classes of case studies
are drawn on from the literature. The first surrounds urban travel and the second surrounds
intra-urban travel.
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2.3.1 Temporal Boundaries

Capital CO2

Urban Travel

A detailed capital CO2 study was carried out for Crossrail, a new high frequency, high
capacity railway line in London. The study found that the construction would cost between 8.6
to 13.5 MtCO2eq and that this would equate to 15% of total life cycle emissions (assuming 120
years span) (de Silva and Paris, 2014). Within these capital CO2 costs, the embodied CO2 of
the materials is dominant at 58% and construction CO2 is 28%. In their 2013 sustainability
report, the operators of Hong Kong’s mass transit railway (MTR) estimated that over a 120
year life span the embodied CO2 of the structures, tracks and equates to 13% of total emissions
(MTR, 2013). A study of a series of US systems found that capital CO2 may equate from 0.8
to 1.5 times the operational CO2 (Chester and Horvath, 2009b). These studies were generally
more comprehensive, explaining in part the larger footprint than the MTR and Crossrail studies.
Aspects such as maintenance and manufacturing were included within the scope.

In the context of rail, road and aviation, these emissions are the result of manufacturing the
vehicle itself. For cars this is often very small (3%) but for buses it may be larger (28%) and
relatively small for operationally dependent aviation (Chester and Horvath, 2009b).

Intra-urban Travel

High-speed rail has stringent geometrical requirements. The horizontal and vertical align-
ment stipulation means that it is often difficult to adjust the line to local topography. A relatively
small trade-off between vertical and horizontal alignments can be made, dependent on the type
of HSR rolling stock used. For example, the French TGV Atlantique rolling stock tolerates
relatively steep gradients with long-radius horizontal curves, in contrast to the Italian Pendolino
rolling stock which tolerates shorter horizontal curves but with less steep gradients. Despite
these potential contrasts, the relatively strict HSR geometry requirements will often result in an
increased need for structures such as bridges or viaducts to allow for the required large-radii
curvature. The carbon footprint of constructing such structures has been well documented in
the literature (Chau et al., 2012a). The costs are directly related to the engineering challenges
faced as a result of the tight geometric requirements of HSR. Therefore, each HSR line must be
assessed in terms of its specific context.

The International Union of Railways (UIC) assessed the capital CO2 emissions of four
different HSR lines – the South Europe Atlantic, the LGV Mediterranee, Taipei–Kaohsiung and
Beijing–Tianjin (UIC, 2011). For each of these lines, a cradle-to-grave analysis was carried
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out on earthworks, material transportation, structures, track, signalling equipment, stations
and rolling stock. In a comparison of these lines in terms of tonnes of CO2 dioxide due to
construction per kilometre of line and year, the two French lines compare similarly, at around
60 tCO2/(km year). The Taipei–Kaohsiung and Beijing–Tianjin lines are considerably higher,
at around 175 tCO2/(km year) and 140 tCO2/(km year) respectively. The large difference
between these two lines and the two French lines is predominantly due to the use of bridges,
tunnels and viaducts on the Taipei–Kaohsiung and Beijing–Tianjin lines.

In addition, the French national rail operator (SNCF) carried out an LCA of a new 140
km TGV line from Rhine–Rhone in eastern France. It was calculated that the construction
amounted to 750 000 tCO2eq (SNCF, 2011), roughly equating to 60 tCO2/(km year) assuming
a 100 year lifespan (as per methodology in (UIC, 2011)). This is a similar value to those
estimated by UIC for the LGV Mediterranee (approx 68 tCO2/(km year)) and the South Europe
Atlantic (approx. 60 tCO2/(km year)). The low capital CO2 costs of the French lines are a
result of few structures such as tunnels (5% of LGV Mediterranee) and viaducts (6.4% of LGV
Mediterranee) (UIC, 2011). Conversely, the Taipei–Kaohsiung line in Taiwan travels through a
mountain range in the densely populated west coast and is mainly run on viaducts (73%) and in
tunnels (13%) (UIC, 2011).

The first phase of HS2 in the UK is a planned new 225 km HSR line from London to
Birmingham. Projections of the scheme’s CO2 credentials estimated that the capital CO2 would
be approximately 5.59 MtCO2eq (HS2, 2013). This value is very large in comparison to the
studied existing projects, and is largely due to the tunnels that are intended to reduce noise
pollution and improve visual amenity (HS2, 2013). Tunnels account for over 1.1 MtCO2eq
alone along the HS2 line. Research has found that using a 9.8 m diameter over a 10 km long
tunnel for a 320 km/h train equates to 64% additional energy consumption when compared with
an at-grade open line (HS2, 2009). Tunnels therefore pose two CO2 emission challenges: Firstly,
they increase the operational energy required by the rolling stock indefinitely; secondly, they
have a large capital investment, primarily as a result of boring and embodied material energy.
The preference for tunnels to mitigate environmental metrics such as noise and visual amenity
may be reduced if a larger premium was put on the two-sided CO2 environmental impacts they
have. However, clearly the choice to utilise tunnels incorporates other considerations beyond a
simple trade-off between CO2 emissions and noise as well as other environmental impacts. For
example, separating land has animal migration impacts and has other wider local connectivity
implications that would need to be considered.

Operational CO2

Urban



2.3 Case Studies 19

There has been a general trend in the reduction of operational emissions, across all modes.
This has been mostly achieved through technical innovations such as improved engines, reduced
weight, aerodynamic improvements and the decarbonisation of the energy supply. Mass public
transport systems have long been identified as offering lower CO2 emissions compared to road
vehicles (Newman and Kenworthy, 1999), (DfT, 2015b). London Underground has achieved a
reduction in emissions from 77 gCO2/km/pkt in 2005 to 61 gCO2/km/pkt in 2015 (TfL, 2015).
This compares to the average UK car performance of 138gCO2eq in 2011, a 40 gCO2/km
saving since 2001 (RAC, 2012). The increase in load factor for car significantly improves the
emission performance and considering 60% of London car trips are made with one occupant
(TfL, 2012), there is scope for large savings. In most major infrastructure projects it is the
desired aim to achieve modal shift from personal vehicles to public transport (Ogilvie et al.,
2004) in order to reduce congestion and emissions. In the case of North American cities,
dominated by personal car use, the challenge to providing adequate public transport is mostly
related to land use and the challenge of achieving sufficient density. In cities with existing
sophisticated public transport systems the shift from personal vehicles to public transport has
proved to be problematic with many examples of shifts actually coming from other public
transport routes, such as the case in the Jubilee line extension (Jones et al., 2002), (Saxe,
2016). Estimations for this project found that 14% previously used National Rail services, 21%
used the DLR, 7% used bus services and only 2% were shifted from car (Lane et al., 2004).
Copenhagen’s metro project resulted in the modal shift of 8-14% from car users, 70-72% from
bus passengers and generated an induced demand of between 13% and 18% (Vuk, 2005). In
Toronto, Saxe found that for the first 6 years of operation the Sheppard line emitted more CO2

emissions that the bus route it had replaced and that the possible savings (66 KTCO2eq) via
mode shift from cars may have been lost through induced demand (Saxe et al., 2015b).

Intra-urban

In 2010 the HS1 line in the UK was carrying less than a third of the passengers it projected
at the time of tendering (Booz, 2012). The biggest criticism of HS1 was that the aviation sector
solved the connectivity problem itself, primarily through low-cost carriers, thus impacting
the ability of HSR to compete (NAO, 2012). However, such low-cost aviation is unlikely to
continue as global emissions regulations impact on the competitive pricing of aviation. Thus,
although the projected returns were not made in the short term, they may come to fruition in
the coming decades.

For HSR, the load factor was found to be the most influential aspect on the carbon credentials
in the four UIC case studies (UIC, 2011). The French TGV lines operate at an average load
factor of 70%, in sharp contrast to the 46% achieved by the Taiwan HSR line. UIC carried out
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a sensitivity analysis of -20% and +20% of the central assumed load factor on an HSR. The
low case (-20%) was calculated to emit 21 gCO2eq/PKT and the high case (+20%) was found
to emit 11gCO2eq/PKT (UIC, 2011) - this is a significant difference. HSR lines, such as those
in France, have traditionally run at close to passenger capacity and therefore fare much better
in terms of the carbon/PKT metric (UIC, 2011).

2.3.2 Spatial Boundaries

Urban Travel

Kenworthy and Newman have carried out many studies into the interdependencies between
land use and transportation. They showed how gasoline consumption varies across the US, as a
result of land use and transportation variations, not due to price or income variations (Newman
and Kenworthy, 1989). For gasoline the US was consuming average four times more than that
of Europe and that gasoline price, income and vehicle efficiency explained only 50% of this
difference in behaviour. They depicted the relationship between annual gasoline use and urban
density as shown in Figure 2.7. Those with high gasoline use and low density were almost
exclusively US cities where so-called urban sprawl (Batty et al., 2003) has occurred. In a
comparison between different areas in the UK, high density areas were associated with reduced
transport emissions per capita (DECC, 2015).

Rail has been long heralded as a means of encouraging more compact land use and thus
reducing emissions (Newman and Kenworthy, 1989), (Senbel et al., 2010). However, Knight
made it clear that a rail project must be supported by development policies as it can not act alone
(Knight and Trygg, 1977). The Bay Area Rapid Transit (BART) system in the US exhibited
fairly modest impacts on the urban development in the area, with impacts mostly focussed on
San Francisco and Oakland (Cervero and Landis, 1997).

The urban density of these areas adds a further dynamic in the form of capital CO2 emissions.
Projects such as Crossrail operate in high density areas and thus exist mostly underground.
This in turn requires CO2 intensive structures and construction, indicating that there is a trade
off to be made here. High density lends itself to mass transport efficiency savings but also
requires a great more CO2 carbon inducing structures in order to be constructed in such a high
density area. This is evident in the US systems, which often exist above ground due to less land
pressure.

Intra-urban Travel
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Fig. 2.7 Gasoline consumption and urban density (Newman and Kenworthy, 1989)
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The land use impacts of HSR compared with aviation are predominantly a comparison
of land use near a train station and an airport. HSR stations often share services with local
and regional services (e.g. King’s Cross St Pancras) and may have land uses extending far
beyond that of a transport hub. Airports are generally located on the outskirts of urban areas as
they require a large amount of space and there must be sufficient buffer space between them
and residents to protect from noise and other pollutants (Kussner and Tsun, 2011). Airports
are associated with negative pressures on nearby land use due to noise, safety, environmental
degradation and economic concerns (Brockway Jr, 2007). Conversely, train stations are
generally found in central locations (e.g. St Pancras in London, Gare du Nord in Paris and Gare
du Midi in Brussels) and are increasingly being used as part of large, multi-use developments.
An assessment of HS1 found that the impact of developments at King’s Cross, Stratford and
Ebbsfleet could be worth £10billion as a present value over 60 years (LCR, 2009) and such
value uplifts are now being used to finance new infrastructure through land value capture
mechanisms. The land use impacts of aviation are generally limited to the airports themselves
and the takeoff and landing corridors. Contrastingly, HSR involves the creation of rail corridors
that impact land use over large and highly variable distances (Kussner and Tsun, 2011). The
land use implications of HSR beyond stations are more complex and interlink with a multitude
of other land use considerations along their length.

2.3.3 Sensitivity

The use of public transport systems to reduce emissions provides a range of case study experi-
ences. It is clear that CO2 emission reductions are far from guaranteed and that attention must
be paid in a multi-faceted way. Consideration must be made to the electricity supply, actual
ridership, actual mode shift and long term mode trends (Saxe et al., 2015a). First and last mile
challenges may result in public transport emission savings being negated or lost in the event of
sufficient car usage between transport hubs over short distances.

Life cycle analysis has historically had to make do with significant data uncertainty (Hui-
jbregts et al., 2001). Static and/or averaged inputs are often used for the means of appraisal and
options comparison. In many cases, the idealised conditions simulated in these analyses may
be significantly distorted from those conditions in reality (for example, high versus low load
factor on a bus (Chester and Horvath, 2009b)). In order to assess the importance of different
factors, a number of illustrative examples were presented here.

The case studies have shown that there are a series of specific factors that must be considered
when making strategic decisions about reducing transport carbon emissions. These factors can
be categorised as:
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1. Capital CO2 emissions

2. Urban form impacts

3. Transport modal split

Capital CO2 emissions have historically been ignored, especially for rail projects. This has
changed in recent years, with major projects such as Crossrail and HS2 carrying out capital CO2

assessments. The barrier to such assessments has historically been primarily data collection
and data quality. Databases of historic project capital carbon data will become an invaluable
resource for getting approximate figures in a timely manner for options appraisal.

It is understandable that such caveats are simplified in order to give comparatives. However,
in the event where such sensitive inputs occur in the interface between the infrastructure and
human decision making a great deal of risk has been identified. This is most evident in the
travel demand for a transport mode which impacts urban form and modal split. It is clear from
the literature review that a critical factor in emissions success for mass transit systems is the
projected travel demand.

2.4 Transportation Modelling

The modelling of future transportation scenarios involves consideration to a range of different
related but separate fields of thought, such as economic, social, environmental, and behavioural
sciences. Demand forecasting specifically involves the prediction of future collective need
for a transportation service and may be quantified in terms of the total demand for a range
of origins and destinations at a given temporal resolution (McFadden, 1974) and the modes
and routes this demand will take on the network. This travel demand is a function of land use,
demographics and other socio-economic metrics and involves the integration of economic and
land-use models.

2.4.1 Challenges

In 2002 Flyvbjerg carried out a statistical study on 258 transportation infrastructure projects of
different types over a range of different geographic locations (Flyvbjerg et al., 2005). For 90%
of rail projects passenger forecasts were overestimated by an average of 105% (as graphically
shown in Figure 2.8) and for 50% of road projects the difference was ±20%. The study also
found that there has not been an improvement in forecasting ability over the study period of
30 years. The authors speculated, built upon this, and identified the causes for such issues,
as is shown graphically in Figure 2.9. These reasons were wide varying and in the case
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of rail projects often relating to political pressure (Flyvbjerg et al., 2002). Other criticisms
include weak partial data, lack of equity (project promoters dominate modelling), insufficient
time (thinking, appraisal and analysis come when decisions have already been made) and the
contradiction between software trends in transportation, and in the rest of the sector (Hollander,
2016). Such criticisms often suggest that modelling is often using as post-justification for a
decision already made.

Fig. 2.8 Inaccuracy of demand forecasts for 27 rail projects from 1969-1998 ((Flyvbjerg et al.,
2005))

Fig. 2.9 Stated cases of innacuracies in forecasts (Flyvbjerg et al., 2005)
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The literature clearly illustrates there is a significant modelling challenge as the phenomena
which is being modelled . In order to assess this we will explore the current, dominant static
modelling paradigm, that of the 4 stage model, against more dynamic modelling paradigms.

2.4.2 Static Models

In the traditional four-stage transportation model (McNally, 2007) the process is conceptualised
as follows and shown in graphically in Figure 2.10.

1. Trip generation

2. Trip distribution

3. Mode choice

4. Route assignment

Fig. 2.10 The four stage model framework (McNally, 2007)

Model logic & interactions

Two of the stage impact directly on two factors that were identified as being highly influential
on CO2 emissions. The land-use related CO2 emission impacts, discussed previously in 2.3.2,
are directly influenced by trip generation. Mode choice directly impacts load factor and
manifests in the sensitivity to travel demand for a given modes CO2 emission credentials. As
was discussed previously, it has long been established that there is a two way relationship
between land-use and transportation. Changes in trip generation impact on land use and land
use changes impact on trip generation.

Trip generation is the process of quantifying, for a range of different trip purposes, trips to
and from different zones (McNally, 2007). For example, a work trip from a household to a place
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of work (home based trip) or place of work to shop (non-home based trip). Land-use is thought
to impact on transportation along three dimensions - density, diversity and design (Cervero and
Kockelman, 1997). Density is a metric of persons to land, diversity measures the proportion
of different land types in an area an design measures the type of infrastructure present in an
area. Statistical studies have shown limited but not inconsequential relationships between these
metrics (Cervero and Kockelman, 1997). The debate surrounding the role of the public and
private sectors to intervene and prime areas in order to unlock development continues and is
closely related to the prevailing economic paradigm in a given country (Mieszkowski and Mills,
1993).

Mode choice modelling is the process of predicting an individual traveller’s decision on
which mode of transport they will use for their particular demand. For a given location, at a
given time, conceptually an individual may be presented with a possible route by car, a possible
route by bus or a possible route by train. Each of these different modes will come with different
attributes, time cost, financial cost or other variable or static metrics and from these attributes
a traveller may make a decision. Of course, these decisions do not occur in isolation and the
localised decision of a given individual may impact on other individual(s). This is most easily
conceptualised in the case of car traffic. Collective decisions to utilise a given road will result
in congestion when the demand exceeds the free-flow supply and as a result journey times will
increase. This journey time increase then changes the information for a future traveller, as it
increases their journey time by that mode, potentially increasing the relative attractiveness of
another mode and resulting in modal shift.

Mode shift from personal vehicle use to mass transit systems is the general policy for
reducing carbon emissions from transportation (Newman and Kenworthy, 1999). This often
manifests itself in the incentivisation of public transit systems (reduced journey times, reduced
price etc) or the disincentivisation of personal vehicle use (via increasing costs (e.g. taxation)
or increasing journey times). The identification of the optimum means of reducing emissions is
challenging in such a complex and constantly evolving environment. In the case of urban travel,
the complex transport network consists of those modes which use road infrastructure (private
cars, taxis, buses)) and those which use rail infrastructure (light/heavy rail, metro/tube/subway
and tram). Each of these modes has different attributes, such as capacity, routing and timing. As
a result of this, these different modes are generally modelled separately, with specific attributes
to the modal nature.
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Model inputs

In order to reflect real-world conditions accurate model inputs must be provided. Transport
networks are complex and offer a multitude of options, via many different transport modes, for
travelling to and from any location.

Road network

Harvesting road vehicle related data for all roads has historically been prohibitively ex-
pensive and often standardised functions of sample roads are used to find suitable values
(Skabardonis and Dowling, 1997), (Mullick and Ray, 2012). Geospatial data such as road
length, lane count, road type and survey data such as traffic counts has enabled the use of
generalised functions such as bimodal journey time functions (Mtoi and Moses, 2014) and
volume-delay functions in order to estimate likely road attributes. Such functions are derived
from limited, old and extremely context specific studies resulting in a limited empirical evidence
base which is increasingly far removed from the modern context (Rose et al., 1989), (Spiess,
1990). Traffic counts are often converted to Annual Average Daily Flows (AADFs) carried out
over short periods and averaged over long periods (DfT, 2010), offering a limited snapshot and
little in the way of temporal distribution. These functions attempt to generalise different aspects
of a roads characteristics in order to create general functions without the need for input surveys.
However, in doing so their ability to give outputs that consider the context specific nature
of a given road reduces. Such differing characteristics can result in very different vehicular
behaviour on roads that may be considered similar by these functions.

Public transport network

Public transport timetables provide a centralised resource for quantifying the journey time
and financial cost attributes of public transport services. Public transport services are centrally
coordinated and scheduled in advance in contrast to the decentralised/individual nature of most
car journeys. In the case of cities where a centralised body is responsible for public transport
services it is often possible to access all public transport mode data through one centralised
repository.

Simplifications are usually employed in order to consider how a traveller may be presented
with a particular service, for example journey times often include half the head time between
services to give a static journey time that considers scheduling (DfT, 2014c). Such assumptions
negate the identified impact of different timetables that is known to influence a traveller’s view
of a public transport service (DfT, 2014c). It also fails to consider the reliability of services
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and their tendency to provide a level of service as is specified in the timetable. Many transport
systems in major cities are stressed at times, often resulting in significant service impacts
for travellers’. For illustration consider the service performance of the London Underground
service (http://tubestatus.net/graph). The result may be highly variable service reliability that
can have a resulting impact on traveller decision making. The difference between planned
public transport services and actual public transport services may have an impact on the
robustness of using the idealised timetable as a model input.

As a result of the scaling limitations and limited data availability, models have generally
made do with limited and simplified data input that often does not reflect real-world conditions
at a satisfactory temporal and spatial resolution.

Decision making heuristics

Separate to the veracity or resolution of the data provided is the process employed by the agent
to make a modal decision. Within any given model type an individual agent decision making
process logic must be programmed.

The prevailing economic paradigm in recent history has been based upon the notion that an
individual will act rationally to maximise their utility (Simon, 1955). This follows a rational
framework where an agent is deemed to act logically in their own self interest, has perfect
information (Simon, 1979) and this information is reflective of real-world conditions (as
challenged in previous section). In the context of transportation modal choice decision making,
this is usually represented as a form of utility theory known as the generalised cost method
(for example WebTAG, (DfT, 2014a)). This is where the monetary and non-monetary costs
of a journey are summed per option and the agent maximises utility by minimising this cost.
The valuation of non-monetary and even monetary metrics is problematic as it requires a value
judgement (Simon, 1979). For example it is possible to consider non-monetary differences
in time perception using variable weights for specific modes allowing time spent waiting to
be weighted as a multiple of time in transit (Jain and Lyons, 2008). This may be extended
to different modes, at different times, for different roles (i.e. for work versus leisure travel),
for different people in different locations. Standardised coefficients may be used for a given
analysis (DfT, 2014a) but studies have illustrated that such value judgement driven methods
have little in the way of empirical justification (Wardman, 2008). In a London specific study, the
exhibited behaviour from a travel survey was combined with crowd-sourced real-time location
device data in order to assess the relationship between exhibited decisions, the financial cost of
the journey, the time cost of the journey, the mode of travel, the role when travelling and the
distance of the route. No significant relationships were found from a multi-variable regression
(Casey et al., 2016).
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In the context of transportation decision making, the discrete choice method has emerged
as a specific tool for modelling a decision from a series of discrete choices. This was originally
put forward in 1985 (Ben-Akiva and Lerman, 1985) with a series of applications and built
upon with simulation results by Kenneth Train more recently (Train, 2009). The discrete
choice method involves the qualitative decision making process when appraising the relative
importance of different attributes for a series of options from which one option must be selected.
The general discrete choice method requires the context of the individual choice, specifically the
quantification of the other options in order to provide the comparative value of different options.
Thus, for transportation application the nested logit model is used as it models alternatives
as related. The existence of this theoretical framework led to numerous attempts to capture
attributes related to this process. Examples of this include the more obvious metrics such as
distance, travel time and scenery (Ben-Akiva and Lerman, 1985), socio-economic metrics,
network knowledge (Ramming, 2001), the difference in perception and reality (Cascetta et al.,
2002) and with real-time traffic data (Dia, 2002).

Despite the advances in discrete choice methods, there is still a conflict with recent ad-
vances in behavioural economics. More recently branches of physiological understanding have
been merged with that of economics in order to create a better theoretical framework within
which to model human decision making. The logic of rational choice is inconsistent with the
cognitive psychology understanding of apparent irrational human decision making (Tversky
and Kahneman, 1985). Using a behavioural perspective Tversky and Kahneman illustrated
examples where decision making under uncertainty exhibited behaviour at odds with that used
generally in utility theory (Kahneman and Tversky, 1979) and more specifically with that used
in logit models within the discrete choice framework.

The specification of which behavioural model to use has become ever more challenging
with the evolution of mobility as a service. In some cases, a simplification has occurred for
users. In the case of London, one payment method may be used on all TfL modes across the
city. This was previously only Oyster cards but has since been extended to include contactless
bank cards and mobile phone payments. Such technological changes streamline the payment
process and by reducing frictional costs such as the need to have cash, or to queue to buy a
ticket, have been shown to impact behaviour significantly (Halpern, 2015) despite their small
financial value. There is also the advent of real-time data provision in the form of service
status twitter updates, shortest path computations and passive information provision (Samsel
et al., 2014). Such technologies mark a shift away from experience based routing to that of
data driven routing with a far greater awareness of the status of the network both spatially
and temporally. The use of such services can result in an agent having as close to perfect
information on the network in real-time as has historically been possible. Questions still remain
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on the veracity of such data and the inherent biases that exist in the transformation of raw data
(location device informed journey times, bus delays) to a route with an algorithm that requires
some judgement calls on tolerance for service interchanges for example. Further adding to the
complexity are new disruptive business models such as Uber and Lyft. These services do not
provide the ability to book ahead of time and requests for transportation must occur in real-time.
Pricing structures are dynamic and have been shown to leverage well known patterns in human
movement (Salnikov et al., 2015). It has even been found that the chief motivator for travellers
selecting these services was the ease of payment (Rayle et al., 2014). It is clear that complex
business models such as these and the empirical data from users on their exhibited decision
making are extremely difficult, if not impossible to capture in the non-behavioural decision
making models such as WebTAG. There is also the need to consider the changes that are likely
to come in the face of autonomous vehicles and the fundamental impacts such technologies may
have on what in many areas is still a motor-vehicle centric transport system. In the context of
reducing transport emissions such technologies offer many possibilities, such as the reduction
in operational emissions via better routing and driving and higher load factors (better resource
allocation).

It is apparent that travellers are being confronted with an ever more complex transport
environment. The private sector is showing increasing awareness of behavioural nudges and
how they may be used to influence behaviour.

Limitations

The limitations may be summarised as:

1. The sequential nature of stages limit the model interactions and does not reflect real-world
decision making.

2. Limited trip types, usually dominated by work trips and excludes increasingly important
leisure trips

3. Specific behavioural rules must be given across aggregated populations and are limited
to the trip types used

4. Spatial and temporal resolution of inputs - zones are often large and usually AM, PM
and IP (inter-peak) time slices are modelled

5. The spatial and temporal resolution of inputs also impacts on scenario testing, dynamic
and context specific policies can not be modelled

6. Modelling paradigm - fundamentally, the model assumes equilibrium and is deterministic
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2.4.3 Dynamic Models

As our appreciation of the inherent complexity in the world has grown so too has the complexity
of the models we use to try and capture it (Batty and Torrens, 2005). This is apparent in the shift
away from centralised, top-down approaches to bottom-up decentralised approaches where the
complexity, uncertainty and apparent chaos of systems, such as cities, is recognised in the very
nature of the model itself (Batty, 2007). Agent based models (ABMs) and cellular automata
(CA) have become the dominant paradigms in recent years (Crooks et al., 2008), spurred on by
computational advances which permit ever more complex simulations. The basic principle of
an ABM is that discrete agents with distinct behaviours interact to bring out macro behaviour
(Silva, 2010), (Silva, 2011). A dynamic simulation can allow for the system processes analysed
at the level of their constituent elements (Crooks et al., 2008) and thus can permit a better
understanding of the agents involved, their stochastic and heterogeneous attributes, and how
their complex interactions lead to exhibited macro level behaviour (Silva et al., 2014). Recent
advances in computational capacity have enabled more complex, dynamic simulations to be
possible (Balmer et al., 2006).

There is a large body of literature associated with the application of ABMs to a wide range
of problems in biology, physics, chemistry and economics. Within this wider context, there are
numerous general software packages such as NetLogo (Wilensky, 1999), MASON (Luke et al.,
2004), Swarm (Minar et al., 1996), Repast (Crooks, 2007) and Ascape (Parker et al., 2001).
However, such general packages suffer from limitations in the geospatial dimension (Crooks
et al., 2008), a key component of transportation simulations.

Specific to the transportation sector TRANSIMS (Smith et al., 1995) and MATSim (Balmer
et al., 2009) offer true multi-modal capabilities and agent level computations. However, the
application of these packages with fine temporal and large spatial resolution has a significant
computational demand which may require simplifications in agent decision making logic
(Manley, 2013). One such simplification is the introduction of random errors as a proxy for
actual differences in the agent population (Zheng et al., 2012) and the issues this represents
when comparing the model to observed behaviours (Nagel and Flötteröd, 2012). Beyond this,
such dynamic models are also harder understand, leading to challenges when attempting to
interpret and communicate simulation results due to the complexity of interactions.

These models are also at odds with the current trends of decentralisation in computer science.
Rather than retrospectively adding parallel computational capability after its construction,
parallel computation should be considered from inception and during construction.
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2.4.4 Computational implementation

The limitations of current modelling paradigms and their model inputs have been discussed.
Agent Based Models have identified as a promising modelling paradigm and temporally and
spatially dynamic inputs deemed important for capturing context specific information. However,
even to assess the value of such methods, a range of technical computational challenges must
first be addressed. These general computing trends are then compared to the specific challenges
posed by a modal choice and route assignment agent based model.

The use of fine spatial and temporal resolution data in a model results in high computational
demands that require scaling to be considered at a fundamental level and not simply a secondary
concern post model creation. In the context of transportation systems this involves the efficient
computation of spatial graph data structures.

Parallel computation is the procedure of executing a large process as a series of smaller sub
processes simultaneously. A complex problem may be divided into sub problems, solved and
then combined on completion affording significant time savings. Historically, this distribution
involved the use of separate pieces of hardware but recent advances in virtualisation has
permitted parallelisation to occur across software and not just hardware.

Conceptually, serial, sequential computing and parallel computing may be visualised as
shown in Figure 2.11.

Fig. 2.11 Serial and parallel computing (Barney, 2016)

Parallel computing involves the deconstruction of a task into a series of discrete parts
that may be solved concurrently. The more a process can be split up, the faster it can be
theoretically run. However, the reduction in run time via parallelisation is constrained by the
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inherent complexity of the process itself. This theoretical capacity of a given task is the focus of
Amdahl’s Law (Amdahl, 1967) which gives the theoretical speedup against number of processes
for different parallel portions, as presented in 2.11. This shows that those processes with high
parallel portions, commonly referred to as "embarrassingly parallel", can be significantly speed
up by computing each part concurrently on a separate CPU. Conversely, those processes which
are inherently serial may offer little or no speed up across multiple processors. The process of
splitting a complex job into a series of sub jobs may be in itself a significant computational
task and there are also issues with parallel programming itself, including memory limitations,
communication demands and load balancing. The actual computational challenge faced here
will now be considered.

Fig. 2.12 Amdahl’s Law (Amdahl, 1967)

Parallel computing and the problem definition

Modal choice and route assignment may be conceptually considered as a problem consisting of
two distinct computational sub-problems:

1. The graph problem
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2. The decision making problem

The first problem consists of graph computations, such as shortest paths, to act as inputs for
the decision making computations. An example shortest path query for travel via car is shown
in Figure 2.13. Multiple shortest path queries, one per available mode may be used to act as
inputs for a single agent decision. Secondly, these different options are then compared and the
agent decision making may be computed. An example process with different modal inputs is
shown in Figure 2.14.

Fig. 2.13 Graph shortest path query illustration

In the case of a modal choice and route assignment ABM the agent interactions occur by
relaying the impact of past agents as inputs to future agents, as illustrated in Figure 2.15. For
example, an increase in users on a given road will manifest itself as an increased journey time
for future traveller decisions involving this road. In order to increase model complexity the
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Fig. 2.14 Example agent decision making process

time steps between each run may be reduced in an attempt to better match the time dependent
behaviour exhibited by travellers, as shown in Figure 2.16. However, this must be constrained
by a variable we may call information lag. Computational constraints aside there is a limitation
on the realistic time step definition as even assuming perfect information may be calculated and
relayed, there is a delay between the measurement of this data and when it is actually provided
to an agent.

Fig. 2.15 Agent feedback between time steps
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Fig. 2.16 Model time step iterations and constraints

The second problem falls into the trivially parallel category. Since there are no interactions
between agents within a given time step, each process may therefore be defined as independent
and therefore may be separated and processed in parallel with little effort.

MapReduce paradigm & agent decision making

MapReduce is a programming model for the processing of large datasets across clusters
of machines (Dean and Ghemawat, 2008). MapReduce built upon the Google File System, a
distributed file system for large distributed data-intensive application (Ghemawat et al., 2003).
The MapReduce paradigm abstracts the parallelisation into two functions; the map function,
and the reduce function. Beyond the user specification of these functions, the remaining tasks of
parallelisation across many machines and tasks such as fault handling and efficient management
of memory and communication are managed to varying degrees.

The execution of a MapReduce model is shown in Figure 2.17. The Map function transforms
an input pair to a set of intermediate key/value pairs. The Reduce function takes this as an input
and merges these values to form a (likely) smaller set of values.

The MapReduce paradigm was developed internally of Google and despite many academic
and non-academic papers, the actual implementation code remained closed source. After the
seminal Google File System and MapReduce papers, a series of open source projects emerged
to apply these techniques under the Apache Software Foundation umbrella. Hadoop is an open-
source framework for distributed storage and distributed processing across clusters of machines
(Hadoop, 2016). Hadoop utilises the Hadoop Distributed File System (HDFS) (Shvachko et al.,
2010) which provides high-throughput access to application data, similar to that of the Google
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Fig. 2.17 MapReduce execution overview (Dean and Ghemawat, 2008)

File System. Hadoop comes with a resource managed (via YARN) MapReduce system for
processing. By default, Hadoop expects hardware failure and thus automates the processes of
handling failures and errors across multiple machines with efficient event responses.

More recently, as the Hadoop related ecosystem has grown, Apache Spark has emerged as a
general engine for large-scale data processing (Apache, 2016). Spark offers interactive use from
a range of programming languages (Java, Scala, Python and R) with integrations for varying data
inputs (SQL, DataFrames and streams) plus support for running on orchestration abstractions
such as Mesos and Kubernetes, with cloud providers such as Amazon Web Services (AWS) and
local standalone implementations. Spark’s execution engine supports cyclic data flow and has
demonstrated run times 100 times faster than that of Hadoop for the same MapReduce process
in memory (Apache, 2016).

These features have thus permitted those who historically did not have the ability to manage
their own cluster to run large parallel process across tens and hundreds of machines. The
general concepts discussed here pose opportunities for more efficiently computing the agent
decision making processes.

Graph computations

Conversely, the graph problem does not lend itself so easily to parallelisation. As has been
discussed, large graphs are useful for a range of computing problems, such as search engine
page ranking, social networks and shortest paths. In recent times, the size of these graphs has
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increased exponentially with graphs of billions and even trillion vertices and edges existing. By
their very nature a graph is an interconnected structure and it is the ability to abstract complex
relationships into a simple structure that has made graphs so useful across a range of problems.
Lumsdaine (Lumsdaine et al., 2007) summarised these challenges as:

1. Data-driven computation

"parallelism based on partitioning of computation can be difficult to express because the
structure of computations in the algorithm is not known a priori."

2. Unstructured problems

"Scalability can be quite limited by unbalanced computational loads resulting from
poorly partitioned data"

3. Poor locality

"Because graphs represent the relationships between entities and because these relation-
ships may be irregular and unstructured, the computations and data access patterns tend
not to have very much locality."

4. High data access to computation ratio

"Graph algorithms are often based on exploring the structure of a graph in preference to
performing large numbers of computations on the graph data."

Modern shortest path algorithms work on unweighted or undirected graphs (e.g social
networks) and so many of the classic, early graph algorithms are still in use day, albeit in
modified forms. In Table 2.2 different weighted shortest path algorithms are presented with
their respective worst case complexities in Big O Notation (Danziger, 2010).

Table 2.2 Shortest path algorithms and their respective complexity

Algorithm Complexity 4 Reference

Bellman-Ford O(VE) (Bellman, 1958)
Dijkstra O(V2) (Dijkstra, 1959)

A * O(|E|) = O(bd) 5 (Hart et al., 1968)

The A* algorithm uses heuristics in order to reduce computational times and in fact, has
the same complexity as Dijkstra when no heuristic is used. Despite the significant performance
gains, it is harder to implement than Dijsktra and its implementation can often become context
specific to a given graph and not generalisable. Bellman-Ford is slower than Dijkstra, but unlike
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Dijkstra it can handle negative edge weights. These algorithms may of course be implemented
within the MapReduce paradigm, however MapReduce is not well suited to graph problems
as for each step, it requires the entire state of the graph to be passed across, a process which
is extremely expensive. Pregel was developed by Google (Malewicz et al., 2010) for a range
of graph applications, including Page Rank classifications. Pregel advocated a vertex centric
approach where "a vertex can receive messages sent in the previous iteration, send messages
to other vertices, and modify its own state and that of its outgoing edges or mutate graph
topology". This method scaled successfully to billions of vertices. For context, the road network
graph for the Greater London Area consists of around 450,000 vertices and 350,000 edges.
Most graph databases and parallel computing frameworks use an implementation of Pregel for
their graph compute support, e.g. GraphX within Apache Spark (Xin et al., 2013) or Apache
Giraph (ApacheGiraph, 2016). However, in practice, the Pregel methodology has limited value
for transportation applications due to the relatively small spatial complexity, but relatively
complex temporal dimension as the message passing costs vastly outweigh any benefits (Shah,
2015).

As a result of this, horizontal scaling methodologies are generally not useful for scaling
graph algorithms. Instead, compute times may be reduced via vertical scaling (improvements
in hardware) or via algorithmic changes.

2.5 Chapter Summary

The uncertainty and risk in transport modelling has a direct impact on the reliability of any LCA
analysis. Beyond, but closely related to the modelling of land-use changes, travel demand and
modal choice modelling have a significant role in capturing this uncertainty. Limitations in the
methods, the input data and model types have been discussed here with challenges identified in
the literature highlighted.

2.5.1 Summary of issues

The literature may be summarised as follows:

1. Transportation is of fundamental economic importance in a globalised world

2. As other emissions decrease, the relative importance of transport sector emissions will
increase

3. Different transportation modes have different life cycle emission characteristics. Tradi-
tional, operational only comparisons are likely to be misleading
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4. Transportation modes must be appropriate and context specific. Apart from cycling and
walking, no mode is inherently low CO2. There is a requirement to consider context
specific:

(a) Capital CO2 emissions

(b) Urban form impacts

(c) Transport modal split

5. For public transport, emission sustainability is extremely sensitive to load factor

6. Modelling modal choice requires dynamic models that:

(a) use real-world data

(b) are truly multi-modal

(c) are able to support a range of decision making frameworks

(d) can scale across large spatial areas whilst maintaining fine spatial and temporal
resolution

7. These challenges occur in a backdrop of increasingly complex networks (with similarly
complex attributes) and new, disruptive business models and technologies.

2.5.2 Research Focus

HSR has been identified by the EU (EU, 2010) and the UK Government (DfT, 2015a) as a low
CO2 transport option. The spatial extent of the HSR network in Europe is shown in Figure 2.18.
From London, direct services already include Paris, Brussels, Lille, Avignon, Marseille and
the Alps (Bourg St Maurice, Aime La Plagne & Moutiers). There are ongoing discussions to
expand this for direct services to Amsterdam, Barcelona, Zurich, Basel, Frankfurt and Madrid.
Beyond direct services, HSR services provide access to the European network through Paris,
Brussels and Lille. From here, it allows travellers to access the French TGV services, German
ICE , Spanish AVE and Belgian Thalys services.

The competitiveness of HSR over conventional rail and aviation is presented in Figure 2.19.
It is shown that for distances up to 800km HSR offers time savings over aviation but that for
distances less than 380km the advantages of HSR over conventional rail are not present. In
comparison to other regions, central Europe offers sufficient density for modal shift away from
aviation to HSR, within these estimated distance bounds (EU, 2010).

The creation of a Trans-European High Speed Rail Network is a stated objective of the
European Union (EU, 2010). Such investment and integration of different domestic networks
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Fig. 2.18 The EU HSR network in 2010 (EU, 2010)
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Fig. 2.19 Journey time versus distance for HSR, conventional rail and air transport (EU, 2010)

will increase the attractiveness of HSR to travellers and improve its competitiveness with
aviation.

High speed rail presents the following traveller possible advantages:

1. Centre to centre travel (e.g. St Pancras to Gare du Nord, compared to Heathrow to Orly)

2. Less security restrictions (less time needed to clear security and more relaxed conditions)

3. More space - increased productivity potential

4. Large luggage allowance

5. Improved punctuality (Eurostar, 2016c)

Operational emission comparatives for the Eurostar service from London to Paris return
(Eurostar, 2006) gives a clear difference between aviation (122 kgCO2e) and HSR (11 kgCO2e).
However, such operational comparisons have been shown to be simplistic and potentially
misleading. Indeed it is even possible that this section of the route may be many multiples
longer than the journey to the HSR hub and thus there is potential that emissions to that hub
may dwarf the longer journey itself. In modelling the value of HSR there is also the need to
model the journeys to and from the respective origin and destination hubs to the true origin and
destination for the traveller. It is this issue which requires a multi-modal model which spans
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across modes and permits sufficiently wide spatial and temporal boundaries, in order to avoid
the trap of insufficient impact assessment.

2.5.3 Identification of tool requirements

ABM’s have been illustrated as a useful tool for modelling complex city transport systems and
facilitating a range of different scenario testing exercises. However, the limitations relating
to current transportation ABM packages discussed in Section 2.4.3 are significant. In order
to scale, MATSim makes simplifications in decision making logic, with a loss of realism as
a result. In section 2.4.2 we showed how models are generally fed with either static or very
crude resolution inputs, resulting in a lack of realism in the decision making process. The
use of this data in decision making is also problematic, with present utility based methods
suffering from a lack of empirical evidence (2.4.2) and the literature review identifying a real
need for a customisable framework that permit the use of a range of behavioural models, as
appropriate and not up-front prescribing a particular logic. This is also extremely important in
the context of artificial intelligence. The computational advances which permit these kind of
fine resolution simulations open the door to data driven decision making heuristics which may
be derived by artificial intelligence methods such as neural networks in some form of real-time
calibration exercise. Such ambitions thus require for the support of extremely flexible data
manipulation and avoid the locking down of manipulation into data silos or inflexible pipelines.
The addition of resources to handle fine resolution temporal data and large resolution spatial
data in a complex decision-making framework present increasing computational demands,
something which the existing software packages were not designed to handle. Beyond this,
there is also the need to visualise complex results in a meaningful way.

The ultimate hypothesis is that the use of an agent based model with real-time big data
inputs will have better predictive ability than that of the incumbent methods. However, in order
to assess this hypothesis a range of technical challenges must be first addressed in order to even
permit the kind of model proposed here.

These tool requirements may be summarised as follows:

1. Dynamic ABM for mode choice and route assignment within the four stage paradigm

2. Multi-modal transport network

3. Realistic data inputs - considering traffic and service reliability

4. Computationally scalable



44 Literature Review

5. Support for different decision making models - existing discrete choice methodologies
and emerging behavioural economic methodologies must be supported



Chapter 3

Using crowd-sourced real-time data to
quantify infrastructure performance

This chapter presents three analyses featuring crowd-sourced real-time data. The first 2 analyses
relate to road vehicle performance and the third relates to public transport performance.

1. Crowd sourced driving journey times

2. Vehicular traffic functions for London

3. Quantification of public transport performance

In the first section, the Google Directions API is used to quantify temporally dynamic road
traffic conditions. In the second section, this data is combined with automated traffic counter
data and a range of context specific volume, speed and saturation functions are derived. The
third section assess three distinct sources for public transport performance quantification.

3.1 Crowd sourced road journey times

The large travel time distributions for journeys by road vehicles as a result of traffic has become
strongly affiliated with the travel mode in recent times. Journey times for a static origin and
destination are highly time dependent and may fluctuate significantly (Wang and Xu, 2011).
Qualitative methods were historically employed to capture this data, through for example, radio
traffic reports which were initially informed by telephone calls and then by inductive loop
detectors and video cameras (Herrera et al., 2010). More recently, the prevalence of portable
handheld devices has sparked a revolution in transportation data availability (Deville et al.,
2014), (Ratti et al., 2006).
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3.1.1 Literature review

Data from location enabled phones may be crowd-sourced and extremely fine temporal and
spatial resolution data may be generated across extremely large spatial areas. However, this
promise comes with a series of technical and non-technical challenges. The technical challenges
relate to the data itself, its size, velocity and the processing requirements (Shekhar et al., 2012).
Crowd-sourcing fine resolution data over long time frames results in large storage demands.
Also, since this data is usually sent at close to real-time, the velocity of its movement requires
efficient software digestion and sufficient hardware resources. The third challenge relates to
the processing of this raw location data in order to quantify metrics specific to the desired
output. There are accuracy issues with the location data, dependent on the hardware itself
and the local environment (Wing et al., 2005). In the context of using this data to quantify
journey times on roads, there is a need for transportation mode inference (Wang et al., 2010)
and the trade off’s that may be required when balancing accuracy and computational demand.
Within mode inference there is also the need to filter out misleading inputs, such as those by
delivery drivers (making multiple stops) and passengers on a bus in a segregated lane. The
non-technical challenges relate specifically to the privacy and security implications of such fine
resolution information (Iqbal and Lim, 2010). There is the potential for such data to be used in
intrusive and even illegal ways. To date, legal frameworks have struggled to keep pace with
the technical innovation of multi-national companies such as Google and Facebook (Wadhwa,
2014). However, more recently political pressure and high profile data breaches have resulted
in stronger legislative actions, for example the General Data Protection Regulation (GDPR)
from the European Union (EU). This new piece of regulation will become EU law in May 2018
and aims to "give citizens back the control of their personal data" (EU, 2016). The ramifications
of a GDPR breach are significant, with a potential fine of up to 4% of global annual turnover.

These technical and non-technical barriers pose a challenge to the skill set and traditional
workflows for the traditional transportation practitioner. As a result of these challenges, data
providers who offer such location data as a service were investigated. In the more traditional
transportation sector there are providers such as Inrix and more broadly there are tech companies
such as Google and Microsoft. The vast majority of these services are targeted at the individual
level and aim to provide high accuracy context specific information to aid individual decision
making. This usually manifests itself in a traveller centric app such as Google Maps or
CityMapper. This also applies more widely to logistics companies who seek to optimise
operations (different variations of the travelling salesman problem).

Google’s traffic maps can be visually inspected through their maps interface on any modern
web browser on google.co.uk/maps. Their colour coded scale gives a qualitative feel for traffic
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Fig. 3.1 Google maps traffic Layer, Camden, Soho, Marylebone and Mayfair areas of London
(Maps, 2017)

conditions on the roads where Google have sufficient data, as is shown in Figure 3.1. However,
such qualitative data is only useful for contrasting different traffic states on a road.

This research investigates the use of Google’s traffic information through the Google Maps
Directions (Google, 2016a) Application Protocol Interface (API). Dependent on their personal
settings, an Android user or other Operating System (OS) user, with the Google Maps mobile
app installed on their location enabled phone send anonymous data to Google. Such data
is personally and commercially sensitive and so post-processing is carried out by Google in
order to ensure that no-one user’s movements can be isolated from the flows (Barth, 2009).
The Directions API is a service that calculates directions between locations using a Hypertext
Transfer Protocol (HTTP) request (Google, 2016a). The use of a HTTP request allows for
scheduled and bulk harvesting of journey information between given origin and destination
pairs.

The Google Directions API was therefore identified as a potential data source as Google
provide the following as a service:

1. Google’s large user base as input

2. Modal inference from individuals
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3. Anonymisation

4. Programmatically available spatially and temporally

3.1.2 Methodology

The Directions API is not intended to be used as a means for quantifying global or local road
transport statistics and usage to do so infringes on the terms and conditions of the service.
Google supported this research with a Business level Maps account and permitted the usage of
the data in this manner for research purposes only.

API request formulation

An individual Google Directions API request requires a time stamp, origin and destination
specification within the HTTP request. Since this research makes use of business level creden-
tials, the secure HTTP (HTTPS) protocol is enforced. This HTTPS request consists of a the
core URL and a series of arguments, as shown:

h t t p s : / / maps . g o o g l e a p i s . com / maps / a p i / d i r e c t i o n s /
j s o n ?
& mode = d r i v i n g
& o r i g i n = o r i g i n c o o r i n d a t e s
& d e s t i n a t i o n = d e s t i n a t i o n c o o r d i n a t e s
& d e p a t u r e _ t i m e = t ime
& a u t h e n t i c a t i o n _ p a r a m e t e r s = s e c u r e i d e n t i f i c a t i o n

There are other optional parameters for driving related features such as waypoint inclusion,
alternative route inclusion, avoidance of routes with tolls, highways, or ferries and arrival time
specification 1 .

For a given Directions API request, Google return a shortest path. An example API response
is presented in Figure 3.2. This API response is in effect a machine readable format of the more
familiar Google Maps interface, as shown in Figure 3.3.

It is first necessary to consider the temporal resolution of the available Google Directions
API data. The method is time dependent and the result returned is for the time of the request.
In order to assess the underlying refresh rate of this service, a small spatial sample was taken
at fine temporal resolution. A section of a road was selected at random, 1845m of the A214
Tooting Bec Road, and an API request made at 30 second intervals. The results are shown for

1This process was carried out in late 2015. Since then Google have released a range of new time related
features which utilise their historic traffic information. (Google, 2016a)
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Fig. 3.2 Example Google directions API response (Maps, 2017)



50 Using crowd-sourced real-time data to quantify infrastructure performance

Fig. 3.3 Example Google maps query (Maps, 2017)

a 36 hour period are shown in Figure 3.4. The minimum journey time on this road was 168
seconds (at 4:13 am) and the maximum journey time 292 seconds (at 5:27pm), equating to
maximum speed difference of approximately 10mph. Journey times rise steadily from 6am
to 9:30am, then drop off mid morning only to rise to the daily peak at lunch time. There is
sub hour fluctuations of 40/50 seconds most of the afternoon and then journey times gradually
trend towards the daily low from 7pm. Interestingly the next day shows a different trend, with
the daily peak exhibited earlier than the previous day at the conventional rush hour of 8-9am.

It is clear from Figure 3.4 that the temporal resolution of the incoming Google data is sub
minute and significant fluctuations are evident within a given hour. Of course, such an output
is consistent with real-world conditions as traffic congestion can generate and dissipate in
minutes. From this test it can be concluded that journey time outputs from Google are refreshed
at sub-minute resolution.

The motivation of this method is to capture the temporally dynamic journey times, not the
shortest path output itself. As a result, the key information from an API response (Figure 3.2) is
the duration_in_traffic field which provides a location device informed journey time for the
given route. Within the step records, a range of different segments with associated meta-data
are available, as given in Table 3.1. The key data to be extracted are the polyline and duration
fields. Together, these present a geographically explicit polyline with a journey time, at a given
time stamp.

Initial experimentation showed that the sum of the step durations was not equivalent to the
duration_in_traffic record but rather equivalent to the duration record for the entire journey.
This shows that Google do not disaggregate the real-time location device informed journey
time across the constituent legs, rather they disaggregate the average condition record, duration
across the constituent legs. Google define these two metrics as follows:
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Fig. 3.4 Google journey time responses at 30 second query rate for A214 Tooting Bec Road
(28 - 30th January 2017)
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Table 3.1 Step specification of Directions API response

Field Example

Distance 42
Duration 15

end_location 51.5307, -0.12473
start_location 51.5201035,-0.096507

html_instructions Turn left at Beech Street
polyline s’wshSBdhyAU"

manoeuvre Turn left
travel_mode DRIVING

duration : The average duration considering historic data (Google, 2016a)

duration_in_traffic : The duration at the requested time stamp (real-time) (Google, 2016a)

It is therefore necessary to quantitatively explore these two different definitions and how
they evolve with time and space, across the study period. In order to do this, a large dataset
was required.

Spatial specification

In the previous section the temporal resolution of this data source were explored and it was
concluded that location device informed journey times may be found at sub-minute resolution.
However, despite this data availability there is still a maximum API request constraint. The
Google Maps Business Account provided for this research permitted 100,000 requests and thus
a trade off must be made between the spatial and temporal resolution. It is therefore necessary
to consider the identified case study of HS1 and use this requirement to drive such a trade-off.

The identified case study of High Speed Rail versus aviation for the case of London to
Paris journeys resulted in the identification of three transportation hubs of interest - St Pancras
International Train Station, London City Airport and London Heathrow Airport. These locations
are shown in Figure 3.5. These locations provide direct services to Paris from the London area.

For the purpose of Google Direction API specification these hubs may be viewed as
destinations. There are a series of different zonal systems utilised for a range of spatial
statistical exercises in the UK (MSOA, LSOA and OS). There are 4835 Lower Super Output
Area (LSOA) zones in the Greater London Area (GLA) and LSOA zones were identified as a
reasonable compromise between size and resolution.
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Fig. 3.5 Location of Paris/Brussels travel hubs in London (Maps, 2017)

In order to encapsulate possible origins within the GLA, population weighted centroids of
LSOA zones are used as origins. There are 4835 LSOA population centroids for the study area
and these are shown in Figure 3.6, where population density is shown as weighted colour per
LSOA.

With 4835 origins and 3 destinations, the result is 14,505 API requests per required time
slice.

Temporal specification

The defined spatial specification demands 14,505 API requests per time slice. With 100,000
requests permitted daily 6 different time slices are therefore possible. In order to inform the
temporal specification of API requests, an empirical study from the literature was drawn upon.
Traditionally, traffic flow has been modelled as a daily bimodal distribution, where the morning
and evening rush hours exhibit higher traffic volumes, lower average speeds and higher journey
times. (Mullick and Ray, 2012) presented mathematical fits of empirical data, as shown in
Figure 3.7 for a road in Jackson, USA. Public transport demands follow a similar bimodal
distribution.

From this idealised distribution in the literature and similar localised experiments to that
of Figure 3.4, a daily schedule was designed. Over the course of 6 weeks (30/09/2015 to
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Fig. 3.6 LSOA zones for Greater London with population density scale

Fig. 3.7 Bimodal distribution of traffic flow due west, Jackson, Alabama State, USA (Mullick
and Ray, 2012)
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9/11/2015), a data set of 3,162,090 API results was generated by polling the Directions API
daily at the below time specification (Table 3.2) for the previously described spatial specification.
Beyond the total limit on API requests, there was also a limit on the velocity of requests - 10
requests per second. 14,505 requests requires approximately 30 minutes to send and as a result
of this the below time stamps indicate the beginning of the schedule and not the absolute time
stamp for a given request.

Table 3.2 Temporal resolution of daily requests

Time

06:30
08:00
11:00
13:00
15:00
17:30
19:00

3.1.3 Analysis

Some general statistics on this generated data set are shown in Table 3.3. It is now necessary to
assess the spatial and the temporal extents of this generated dataset.

Table 3.3 Generated dataset summary

Data Size

Requests 3,162,090
Bad requests 89

Total number of legs 64,528,506
File size 43.18GB uncompressed
File size 4.81GB compressed

Spatial coverage

In the previous section, the population weighted centroids of LSOA areas were taken as origins
and the three modal destinations, St Pancras International Train Station, Heathrow Airport and
London City Airport were taken as destinations. The intention was to capture location device
informed journey times for as many roads as possible within the study area and within the
constraints of the API quota.
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The polyline for each API response may be parsed and visualised simplistically in its own
right, in order to visualise the spatial coverage generated by this schedule. This is presented
in Figure 3.8. Routes which feature frequently are weighted and the density may be visually
inspected. It is visually evident that good coverage has been achieved as the API responses
present a realistic visualisation of the road network.

Fig. 3.8 Spatial coverage of generated Google Directions API dataset

Temporal coverage

Beyond the spatial resolution of the generated data, there is also the temporal resolution which
captures the dynamic changes in journey times as a result of changing road conditions. This
may be considered in terms of global average speed distributions, journey time distributions
and specific edge journey time distributions, for a range of different temporal bounds.

Average speed distribution

A macro average speed comparison may be computed for all journeys, for a given hour,
across the entire 6 week sample period. This is graphically shown in Figure 3.8. It is clear that
globally, average speeds are lower in the morning rush hour and afternoon periods than they
are during the day, early morning and later at night. Comparing these periods shows an average
speed difference of nearly 20 mph between 5pm and 9pm for the routes in this dataset. The
lowest global average speeds are exhibited at 9am and 5pm. For reference the slowest exhibited,
individual journey average speed of the entire dataset was found to be 2.11mph at 12:04pm and
conversely, the fasted exhibited individual journey average speed was found to be 63.54mph at
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06:55am. In the context of limitations on the Directions API it is interesting to note that no
record ever presented a location device informed journey time which exceeded the legal speed
limit. It may be assumed that despite likely location device inputs in excess of the speed limit,
Google’s algorithms filter such results and present an upper bound constraint in API responses.

Fig. 3.9 Average speed per time of day

The average travel speeds on the road network shown in Figure 3.9 illustrate a global
representation, which negates the context specific nature of a given route/road or even distinct
days of the week or weeks in the month. Each section of road may have a unique road type,
road nature, lane count, traffic furniture or specific geometry; factors which all impact journey
times. These factors may explain why the distribution shown in Figure 3.8 is not a bimodal
distribution, which is often used to model daily journey time distributions (for example (Mullick
and Ray, 2012)).

Journey time distribution

A journey time distribution plot may be created for each individual origin and destination
pair across the entire study period. Since the programmatic method explained previously
generates so many of these records, an unmanageable amount of these plots may be generated.
Therefore, the first exploratory process involved the selection of plots at random for inspection
and from these, 4 broad types were extracted. The first type illustrates those with morning
dominated increased journey times, the second for evening dominated, the third for bimodal
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and the fourth for those exhibiting no obvious pattern. For clarity, a facet plot has been used to
present the entire study period in distinct weekly sub plots.

In Figure 3.10 the weekly journey time plots for route, over a series of weeks, to Heathrow
is presented. On initial inspection it is clear that there are significant daily fluctuations on
this route, with the highest journey times generally falling in the morning rush hour period.
Figure 3.12 presents a more traditional, bimodal journey time distribution. The daily morning
and evening peaks are exhibited across most week days, on each week. Figure 3.12 presents
a more traditional, bimodal journey time distribution. The daily morning and evening peaks
are exhibited across most week days, on each week. In Figure 3.13 a London City journey is
shown to exhibit chaotic journey times.

Fig. 3.10 LSOA E01003681 to Heathrow Airport journey time distribution (weeks 41 - 45,
2015)

It is clear from these randomly selected plots that the assumption of the existence of a
typical day or even week is challenging. Journey times are shown to fluctuate considerably in
response to local conditions, with some examples illustrating the traditional bi-modal loading
and others illustrating morning or evening predominant loadings.

Statistical exploration
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Fig. 3.11 LSOA E01004662 to Heathrow Airport journey time distribution weeks (weeks 41 -
45, 2015)

Fig. 3.12 LSOA E01000345 to London City Airport journey time distribution (weeks 41 - 45,
2015)
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Fig. 3.13 LSOA E01001685 to London City journey time distribution (weeks 41 - 45, 2015)

The selection of these example plots was carried out in an arbitrary way and there is a
requirement for statistical analysis in order to explore what may be understood of the underlying
dynamics. For the range of time stamped journeys the following metrics were computed:

1. Mean journey time, speed and distance

2. Ratio of maximum to minimum journey time

3. Standard deviation & variance of journey time

1. Mean journey time, speed and distance

The mean journey time presents a crude comparative of average journey times, per hub. In
Table 3.4 we can see that Heathrow Airport exhibits the largest average journey times whereas
London City and St Pancras have much similar average journey times, consistent with their
more central location in relation to the LSOA weighted origins. Heathrow’s average journey
time benefits from an increased average speed, which reduces the impact of the considerably
larger average journey distance from the LSOA weighted origins.

This may be disaggregated further and the average impact of traffic at different times of the
day may be extracted. In Figure 3.14 we can see the mean journey time per hub, disaggregated
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Table 3.4 Mean journey times, speeds and distances per hub - driving

Hub mean journey time mean journey speed mean journey distance

Heathrow Airport 3186 seconds 15.92 m/s 51.04 km
St Pancras International 2662 seconds 5.91 m/s 16.23 km

London City Airport 2793 seconds 9.25 m/s 25.83 km

by hour of the day. Each of the hubs exhibits a morning and evening peak, with the evening
peak more pronounced for London City and Heathrow Airports. At 6pm, a sharp drop in
journey times is globally exhibited.

Fig. 3.14 Hourly mean journey time for each hub

2. Ratio of maximum to minimum journey time

The ratio of maximum to minimum journey times, per hub illustrates the full range of
exhibited journey times for a given origin and destination (hub) and this may be viewed as a
density plot, disaggregated by hub, as is shown in Figure 3.15.
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Fig. 3.15 Ratio of maximum to minimum journey times, for each mode
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It is clear that the majority of journey times fall between 1.5 and 3 fold increases relative
to the minimum journey time. However, the 3+ fold increases make it difficult to inspect the
differences between the different hubs .Small differences can be seen between the different hubs,
with St Pancras exhibiting the largest range of values, indicating that journeys are generally
more variable for this hub when compared to London City, which exhibits the narrowest range.
The distribution also shows a long tail, comprising of very large journey time increases that
occur rarely. Such records usually indicate a disruptive event such as a road traffic collision or
unplanned road works.

Figure 3.16 presents responses which exhibit a sudden journey time increase. This plot
presents normalised journey times for a week. A sudden event can be seen to occur on the
Wednesday morning, with journey times peaking at nearly a six fold increase. This journey
time increase continues for the remainder of the week. A search of local media found a burst
pipe (Figure 3.17) on a road in close proximity to this particular road, impacting significantly
on journey times during the event and the subsequent repairs.

Fig. 3.16 Sample journey time plot with disruptive event
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Fig. 3.17 Disruptive event cause
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3. Standard deviation & variance of journey time and journey speed

We have considered average journey times and their maximum and minimum ranges, per
hub and over different time slices. The standard deviation, defined as the spread, or amount of
variation around the mean of the data gives a clearer insight into the fluctuations that can be
visually inspected in between relatively short time frames, across the entire temporal range of
the data. From the standard deviation the variance may be computed and the variance enables
the comparison of data sets with underlying differences (e.g. different journey lengths) as it
considers the mean of the data.

The variance may therefore be computed per unique journey, for journey time (Figure 3.18)
and speed (Figure 3.19), and the collective variances may be visualised as a probability density
function, with disaggregation by hub for comparisons. These comparisons are made for the
95% percentile in order to remove extreme cases and for more clarity between modes.

The centroid of the LSOA’s has a lesser effect on the journey time variance for St Pancras
and London City. Conversely, Heathrow’s Western location results in a West weighted situation,
which is not counteracted as a result of the origins and destinations specified by GLA LSOA
centroids.

Propensity for diversion

A static origin and destination pair do not always output the same path at all times. In
some cases, there may be multiple possible routes with similarly competitive journey times
depending on traffic, road works and other possible factors. By considering the polyline for a
given response from the Directions API we can assess the propensity for diversion for different
destination hubs. Figure 3.20 presents the probability distribution function for the number of
unique polylines (routes) disaggregated by hub. Heathrow is shown to exhibit the lowest mean
number of unique polylines and St Pancras is shown to exhibit the highest mean number of
polylines, suggesting more central hub destinations illustrate more relative competition between
different routes.

In Figure 3.21 the number of unique polylines is plotted against the direct distance (crow
flies) between the origin and destination hub. A general positive trend is shown with the further
the journey, the more likely it is for a diversion.

Link time distribution

The sections up to this point have focussed on the outputs related to a fixed origin and
destination pair. However these journey outputs do no necessarily involves the same pieces
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Fig. 3.18 Journey time variance density plot (0.95 percentile)
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Fig. 3.19 Journey speed variance density plot (0.95 percentile)
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Fig. 3.20 Probability density function for number of unique polylines, for each hub, by driving
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Fig. 3.21 Scatter plot for number of unique polylines against euclidean distance between origin
and destination, for each hub, by driving
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of physical infrastructure. As was shown in Figure 3.2 and illustrated in Table 3.1, each API
response contains a series of legs, each with the key journey time information and the polyline
of that particular part of the journey. This polyline either represents a road edge or a series of
road edges. This polyline may be first used to assess the propensity for route change on a static
origin and destination journey and secondly, as a more indicative comparison between journey
times.

In order to assess how journey times change for the same piece(s) of infrastructure, the
polyline may be taken as a unique key and journey times for different time stamps compared.
The generated data set consists of 64,528,506 individual legs and so an efficient means of
identifying unique polylines with an array of time stamped journey times is required. The
raw polyline, consisting of a series of coordinates is compressed using a lossy compression
algorithm producing a single string representation (Google, 2017). To decrease space even
more, Google offset from the previous point, rather than constructing from scratch. Thus,
before unique polylines may be identified, each leg of an API response must be re-factored to
its true representation and not its relative representation within a given API response. When
this is complete, each leg may be treated in isolation.

After this re-factoring process the polyline may be re-encoded to firstly, save space and
secondly, for efficient manipulation. A hash function may be used on the polyline string in order
to efficiently pair exact matches from the large list of polylines. This is a memory intensive
problem as all of these polylines must be held in memory whilst hashed, compared and paired.
The outcome is the pairing of common polylines with a range of time stamped attributes in a
unique array of the format:

{u ’ a t t r i b u t e s ’ : [
{u ’ d e s t i n a t i o n ’ : [ 5 1 . 5 0 1 1 9 2 6 , −0.1239613] ,
u ’ d i s t a n c e ’ : 2232 ,
u ’ d u r a t i o n ’ : 420 ,
u ’ l e g _ t r a v e l _ m o d e ’ : u ’ DRIVING ’ ,
u ’ o r i g i n ’ : [ 5 1 . 5 1 1 0 1 7 , −0.1018502] ,
u ’ t ime_s tamp ’ : u ’1445267285 ’} ,
{u ’ d e s t i n a t i o n ’ : [ 5 1 . 5 0 1 1 9 2 6 , −0.1239613] ,
u ’ d i s t a n c e ’ : 2232 ,
u ’ d u r a t i o n ’ : 417 ,
u ’ l e g _ t r a v e l _ m o d e ’ : u ’ DRIVING ’ ,
u ’ o r i g i n ’ : [ 5 1 . 5 1 1 0 1 7 , −0.1018502] ,
u ’ t ime_s tamp ’ : u ’1445238962 ’} ,
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{u ’ d e s t i n a t i o n ’ : [ 5 1 . 5 0 1 1 9 2 6 , −0.1239613] ,
u ’ d i s t a n c e ’ : 2232 ,
u ’ d u r a t i o n ’ : 420 ,
u ’ l e g _ t r a v e l _ m o d e ’ : u ’ DRIVING ’ ,
u ’ o r i g i n ’ : [ 5 1 . 5 1 1 0 1 7 , −0.1018502] ,
u ’ t ime_s tamp ’ : u ’1445759913 ’} ,
{u ’ d e s t i n a t i o n ’ : [ 5 1 . 5 0 1 1 9 2 6 , −0.1239613] ,
u ’ d i s t a n c e ’ : 2232 ,
u ’ d u r a t i o n ’ : 417 ,
u ’ l e g _ t r a v e l _ m o d e ’ : u ’ DRIVING ’ ,
u ’ o r i g i n ’ : [ 5 1 . 5 1 1 0 1 7 , −0.1018502] ,
u ’ t ime_s tamp ’ : u ’ 1 4 4 4 8 0 5 5 9 8 ’ } ] ,

u ’ p o l y l i n e ’ : u ’ yifm { ‘ b B e l x i y t ‘@}gksAo | xPnv ‘ y I ~powvsG ’ } }

This output presents a unique polyline with various different journey times and respective
time stamps. As was previously shown, these individual durations do not actually sum to make
the key duration_in_traffic record for each API response. However, this longitudinal analysis
has shown that these more static, average metrics of average condition journey times do in
fact change with time over the 6 week period of this study. This can be seen in the example
above, where journey times changed by a few seconds from 417 seconds on the 14th October
at 7:53am, to 420 seconds on the 25th October at 07:58am.

3.1.4 Conclusions

This section has presented two distinct different methods of quantifying road journey times
at road edge and journey level, across a range of different temporal boundaries. It has been
illustrated that there are distinct differences between the more static, average measurement
of journey time provided by Google, the duration record which is presented at fine spatial
resolution (sub journey level) and the duration_in_traffic record which presents finer temporal
resolution data but at the compromise of sub journey level spatial resolution. There is therefore
a trade-off between spatial and temporal resolution when attributing macro journey times to the
micro level sections of that journey.

Despite illustrating believable journey time distributions, often in line with models from the
literature (e.g. bimodal distributions) the process which produces these metrics is technical
opaque. Google’s methodology for computing this shortest path is not publicly available for
commercial reasons. The sample size of location device coordinates which contribute to a
given API response is also unknown as Google will not provide this information citing privacy
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concerns. However, the specification of a static origin and destination with no route-finding
requirement, across short distances and for a range of time stamps returns temporally dynamic
journey times.

3.1.5 Summary

1. Hypothesis

The Google Directions API may be used to quantify road conditions considering traffic
congestion across a large spatial area at fine temporal resolution. By scheduling API
requests in a targeted way, the programmatic nature of the service can be levered and
specific questions about particular origins and destinations may be answered.

2. Novel contributions

The method developed here has been shown to provide fine resolution temporal data
across a wide spatial resolution. The outputted data may be used to quantify the dynamic
nature of road journey times. This data may be used to categorise different transportation
hubs, such as airports and train stations in terms of their relative access at different
times of the day, on different days and on different weeks. However, due to a lack of
comparable resolution data there is a validation challenge. Generally, we can see that the
trends exhibited on many roads fall in line with general understandings surround peak
and off-peak flows towards and away from large trip attractors (i.e. morning peaks into
London and evening peaks out of London).
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3.2 Crowd sourced journey times and automated traffic counter
volume-delay functions for London

When the vehicular demand for a road exceeds the ability to supply, a journey time-delay is
incurred as a result of the congestion generated. This relationship of traffic volume to time-
delay has historically been simplified to macroscopic principles. The individual interactions of
increasing and decreasing vehicle volumes result in changes to the journey time on any given
link. As traffic volume and therefore density increase on a fixed length link vehicle speed will
reduce in order to safely manage the increased volume. This research investigates the pairing
of two data sources; crowd sourced location device informed journey times and traffic count
data from the Automated Traffic Counter (ATC) system in the Greater London Area (GLA).
This section will begin by reviewing the literature on the methods currently employed. A new
method is then proposed which aims to satisfy some of the identified limitations in the current
methods by using fine resolution data in the form of automated traffic counters and location
device informed journey times on a range of roads within the GLA.

3.2.1 Literature review

There is a range of macroscopic methods used to relate traffic volume to time-delay.

Bureau of Public Roads method

The Bureau of Public Roads (BPR) volume-delay curve was developed in the 1960’s and
is the most widely used function for relating vehicle volume and journey time. Its simple
mathematical form and input requirements are attributed to its widespread use (Skabardonis
and Dowling, 1997). There are many different forms of the BPR function as many different
organisations have adapted it with various local empirical and/or hypothetical data (Mtoi and
Moses, 2014) in an attempt to localise the function.

The general BPR function is mathematically defined as:

u =
u0

(1+α(x)β )
(3.1)

Where:

u = speed

u0 = free flow speed

x = saturation (volume/capacity)
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α and β = coefficients

In the case of London, TfL have calibrated the BPR function with exhibited traffic counts
and thus defined α and β values for the area (TfL, 2010).

α = 1.0

β = 2.0

Despite the popularity of the BPR function it has many limitations, primarily as it was
created by fitting a polynomial equation to uncongested freeway data from the 1950’s and thus
does not reflect modern operating conditions (Skabardonis and Dowling, 1997).

Davidson method

Davidson (1966) proposed a general purpose travel-time formula in 1966 and this method has
undergone numerous modifications since it was first proposed (Mtoi and Moses, 2014). Its
popularity is as a result of its flexibility and applicability for a range of contexts (Taylor, 1997).
It has exhibited a closer match to actual volume counts and has a stronger theoretical base than
the BPR (Rose et al., 1989). There have been modifications of the Davidson function since it
was first proposed (e.g (Tisato, 1991), (Akcelik, 1991) ) with the mostly widely used being the
Akcçlik functions.

Akcçlik method

The Akcçlik method is a time-dependent modification of the Davidson model which uses the
coordinate transformation technique in an attempt to overcome the conceptual and calibration
issues with the Davidson method (Akcelik, 1991). It has illustrated good results in certain road
types, tolls roads and signalized arterials (Mtoi and Moses, 2014).

Conical method

Spiess (Spiess, 1990) proposed the conical method in 1990. It attempted to overcome some
of the upper bound BPR limitations through the use of hyperbolic conical sections whilst
maintaining a similar form to the BPR and thus enabled a direct transfer of parameters.

Identified limitations

These idealised functions attempt to generalise different aspects of an individual road’s charac-
teristics in order to create usable functions that do not require a large range of survey requiring
inputs. The general nature of these functions enables their ease of use and gives widespread



3.2 Crowd sourced journey times and automated traffic counter volume-delay functions for
London 75

applicability. However, in doing so their ability to give results that consider the individual
characteristics of a road (i.e. geometry, the presence of traffic furniture, road quality and
the surrounding land use) reduces. Such differing characteristics can result in very different
vehicular behaviour on roads that may be considered similar by these functions. The literature
has identified the need to inform these functions with empirical and context specific data (Rose
et al., 1989), (Spiess, 1990) but recognised the difficulty and cost associated with collecting
such empirical data as being prohibitive (Rose et al., 1989).

Input data

There have been studies that incorporate different forms of field sensor data (Mtoi and Moses,
2014), (Neuhold and Fellendorf, 2014) in volume delay functions. However, the data used in
these studies has been generated specifically for that application and requires specific hardware
and/or software for use. Recent hardware and software innovations have led to the increased
use of real-time crowd-sourced data feeds generally in transport modelling. This includes
applications of location data for emissions estimations (Hirschmann et al., 2010), origin and
destination matrices (Toole et al., 2015) and general urban traffic management applications
(Artikis et al., 2014). This research investigates the use of new, real-time crowd-sourced data
feeds that have a wider spatial spread and are in some cases not generated specifically for
this application. These sources may be used to consider some of these previously ignored
characteristics and create temporally and spatially dynamic volume, speed and saturation
relationships. Such data sources can harvest data at a finer resolution over a longer (even
indefinite) period of time giving a far greater understanding of the temporal variations and
trends exhibited on road infrastructure.

3.2.2 Automated traffic counters

Automated Traffic Counters (ATCs) are magnetic induction loops located in the road surface.
The passing of a vehicle results in an electromagnetic signal. The ATCs in the Greater London
Area count every vehicle which passes over the inductions loop. The data used here was
harvested over a period from the 29th February to the 21st March 2016.

Location of ATCs in Greater London

There are 37 Department for Transport (DfT) ATC locations in the Greater London Area. Most
of these locations operate in both directions (34) with others operating only in one direction (3).
These ATC locations cover a range of different DfT defined road classes (Table 3.5). Guidance
on the road classification system in the UK is published by the DfT (DfT, 2012a).
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Table 3.5 ATC locations by road class

Road Class Count

Trunk 6
Principal 16

B 3
C 3

Unclassified 9

These ATCs are distributed across the Greater London Area as is shown in Figure 3.22.

Fig. 3.22 ATC Locations in Greater London Area (Maps, 2017) with DfT data. The red flag
illustrates the location of the ATC itself. The blue flags illustrate the origin and destination
locations specified in order to harvest journey time information
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Raw ATC data

The raw ATC data contains individual records for each vehicle that passed. Over the test period
of 3 weeks there were approximately 4.5million records of vehicles at individual points. For
illustration, Table 3.6 shows a representative sample from the first day of these records at ATC
11 (as labelled in Figure 3.22).

Table 3.6 Raw ATC data record sample

Site Direction Date Time Speed

11 Northbound 2016-02-27 00:00:28 37
11 Northbound 2016-02-27 00:01:19 40
11 Northbound 2016-02-27 00:02:25 42

Manipulated ATC data

In order to combine this data with the temporal journey times, individual vehicle records must
be combined hourly in order to find the total volume on that link, per hour. A Python (van
Rossum and Drake, 2002) script using the Pandas (Pandas, 2016) data library was used for this
processing. First, a unique identifier was formed by concatenating the site and directionality of
the ATC. The time stamp was rounded up to the next hour in order to quantify the total volume
per hour leading up to the journey time taken, up to that hour. This resulted in an output which
featured traffic counts per hour (volume) for a site, direction and date, as is sampled and shown
in Table 3.7.

Table 3.7 Processed ATC data record sample

Site Direction Date Hour Count id

9 Southbound 2016-02-27 13 1206 9S
9 Southbound 2016-02-27 14 1222 9S
9 Southbound 2016-02-27 15 1408 9S
9 Southbound 2016-02-27 16 1604 9S

3.2.3 Crowd sourced journey times

Location data

Location capable mobile phones have enabled the harvesting of fine resolution temporal
and spatial data. The location of a device may be inferred from the use of GPS, cell tower
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triangulation, WiFi SSID mapping, Bluetooth and other technologies, either in isolation or in
tandem. Such data holds a great deal of promise due to the range of possible uses it has in
the transportation sector (Zheng et al., 2010). The anonymous crowd-sourced collection of
this data can be used to derive road traffic conditions (Barth, 2009). Such a traffic condition
method is well suited to areas of high density, high travel demand and high mobile phone
uptake, such as a city. This information is used by many providers who provide real-time traffic
informed shortest path directions as a service. For example Apple (apple.com/ios/maps), Bing
(bing.com/map), Google (google.com/maps) and TomTom (tomtom.com). These services are
generally used by individuals who wish to make an informed decision on route choice for
a given mode or even a mode decision on how to get from their starting point to a desired
destination. The aim of this research was not to make use of the shortest path algorithm or
large-scale computational power of these service providers, but to access a more localised,
location device informed, journey time on a fixed and relatively short stretch of road.

Google Maps

This research makes uses of Google’s traffic information through the Google Maps Directions
(Google, 2016a) Application Protocol Interface (API). Dependent on their personal settings,
an Android user or other Operating System (OS) user, with the free Google Maps mobile
app installed on their location enabled phone send anonymous data to Google. Such data is
personally and commercially sensitive and so post-processing is carried out by Google in order
to ensure that no-one user’s movements can be isolated from the flows.

Google’s traffic maps can be visually inspected through their maps interface on any modern
web browser on google.co.uk/maps. Their colour coded scale gives a qualitative feel for traffic
conditions on the roads where Google have sufficient data, as is shown in Figure 3.23. Such
qualitative data is only useful for contrasting different traffic states on a road.

Google Maps Directions API

The Directions API is a service that calculates directions between locations using a Hypertext
Transfer Protocol (HTTP) request (Google, 2016a). The use of a HTTP request allows for
scheduled and bulk harvesting of journey information between given origin and destination
pairs. The aim of this research was to combine crowd-sourced location device informed
journey times with traffic counts from the DfT ATC network. As such, the first step was to
specify origins and destinations for the Google Directions HTTP request that would provide
a journey time for the traffic counts at defined ATC locations. There is a need to convert
from EPSG:27700 (British National Grid), as provided by the DfT for ATC locations, to the
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Fig. 3.23 Google Maps Traffic Layer, Camden/Soho/Marylebone/Mayfair area of London
(Maps, 2017)
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EPSG:4326 (WGS84) as used by Google Maps. The ATCs take a point measurement at a
defined location along the road link. In order to find a journey time along that road, an origin
and destination location definition process is required. In deciding on origin and destination
pairs a balance must be made between having sufficient distance in order to get meaningful
journey time results and having sufficiently short distance so as to not include other phenomena
such as junctions and intersections. Consider ATC location 6 Eastbound, the A205 Dulwich
Common SE21 in the Borough of Southwark. In Figure 3.24 the location and defined origin and
destination points can be inspected. Automating the definition of these origin and destination
pairs was challenging as simply taking the start/end of a given road often gave a route that
was too long and thus was distorted by other traffic, outside of the ATC consideration. Other
methods based upon an idealised distance between points and the density of junctions was
deemed too complex and not durable. For bidirectional ATC locations it was often not possible
to define the Eastbound route as the inverse of the Westbound route as Google distinguish
between different sides of the road, resulting in a route which involves a detour to safely
navigate to the correct orientation. Thus a manual process was employed to visually inspect
each location, the surrounding context and decide on the most appropriate O/D pair. Once this
manual process was complete, a matrix of origin and destination pairs was produced containing
ATC metadata that will allow for the pairing of Google results to its corresponding ATC data.

Fig. 3.24 ATC 6 Eastbound with defined origin and destination points (Maps, 2017)

Sending HTTP request to Google

A HTTP request is made in Python to Google’s servers with the origin, destination, mode
(driving) and the specified departure time. In order to harvest real-time data that is informed by
location device information at that time the departure time is set to the live time and a scheduler
is used to run the same origin and destination pairs repeatedly. Cron, a time-based scheduler
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for Unix operating systems, was used to run the Python HTTP request every hour for the given
dates of the study.

Receiving JSON response from Google

In response to the HTTP request Google returns results in JavaScript Object Notation (JSON,
see json.org), a lightweight data-interchange format. At the time of writing the JSON response
contains 3 root elements, the status, geo_coded waypoints and the routes. Within routes
the key metric of duration_in_traffic for the requested route is found, stating the estimated
journey time on the route, at that time. The entire JSON response is parsed and transferred
to a MySQL (mysql.com) relational database for temporary storage. From the database, the
origin, destination, ATC related data and the key duration_in_traffic metric can be paired with
the ATC counts.

Data cleaning

Prior to combining the two data sources the Google data was sense checked. A small number
of Google results returned no duration_in_traffic field. These results were likely due to low
density of location device data as a result of low user demand or poor location device signal
reception in that location. This included three ATC pairs (ATC numbers 42, 48 and 74 in
both road directions) and one ATC (36N) in one direction. They were discarded so as not
to skew the results. It was also noted that at times of low demand (late night and early
morning) the duration_in_traffic response did not return and it can therefore be deduced that
duration_in_traffic was only returned when there is sufficient spatial and temporal resolution
location device input data.

Data validation

Google’s methodology nor location device sample information is available for commercial and
privacy reasons. Since there are no comparable, freely available data sources, the Google API
responses pose a validation challenge. It is therefore an assumption that these responses present
location device informed journey times.

3.2.4 Analysis

The combination of Google data and DfT ATC vehicle count data enables various relationships
to be assessed and defined. In this section a number of these relationships are discussed. For
the purposes of comparison, the widely used BPR functions are shown in tandem.
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Fig. 3.25 Journey time distribution Location 67 (7th-13th March 2016)
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Journey time distribution

The Google data was analysed to assess the vehicle traffic distribution pattern. Vehicle traffic
distribution is generally modelled as a daily bimodal distribution with peaks associated with
the morning (to work) and evening (leaving work) periods (Mullick and Ray, 2012). It is
generally expected that the load will lean on the city inbound direction in the morning and
then on the city outbound direction in the evening. Figure 3.25 displays a one-week sample of
ATC location 67 in both the northbound and southbound directions. Location 67 is situated on
Buckingham Palace Road, A3214 with the northbound direction leading to central London and
the southbound direction heading away from central London. In order to make journey time
comparisons, the journey time delay is normalised.

The normalised time delay is defined as:

timedelaynorm =
Journeytime
Journeytime0

(3.2)

Journey time0 is taken as the minimum exhibited journey time on the road link. Journey
time0 is also referred to as the free flow journey time and is usually found in the early hours of
the morning. This empirical method deviates from the standard method of defining the free
flow journey time which generally relies on using time delay coefficients for different road
types, speed limits, link lengths, widths, gradients, traffic junctions and so on (DfT, 2002).

In this study, it is recognised that such an assumption negates the impact of context specific
information such as road geometry or road furniture. Rather than making assumptions about
the free flow journey time it was taken as being the lowest exhibited time from the Google
journey time data over the period of the study.

In Figure 3.25 the x-axis displays normalised journey times as a ratio of the free flow journey
time (t/t0) and the y-axis displays these journey times over seven days at one-hour resolution.
On first inspection, the seven different days are clear. The late night and early morning periods
display the lowest journey times, approaching time0. The northbound direction, towards the city
centre, exhibits the largest load in the mornings and interestingly, peaks on a Friday evening.
The southbound, away from the city centre direction peaks daily in the afternoon and similarly
to the northbound lane, has its weekly peak on a Friday evening. Saturday and Sunday show
distinct behaviour to weekdays, with overall reduced journey times in both directions and
a proportionally higher journey time on the southbound, away from city lane, in contrast to
weekday behaviour. It is clear from this alone that even the categorisation of journey times as
weekend vs weekday distributions (Mullick and Ray, 2012) is problematic, as each day exhibits
its own distinct behaviour.
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Saturation-delay relationship

By combining the Google journey time data with the ATC vehicle count data, volume delay
curves may be plotted. In order to facilitate comparisons, the vehicle volume is converted to
saturation where saturation is defined as:

saturation =
volume

capacity
(3.3)

Defining capacity is challenging as there are a range of possible definitions:

1. Free flow capacity - the maximum vehicle volume before a time-delay is incurred

2. Maximum flow capacity – absolute vehicular volume a road can carry with no regard to
time-delay

3. The UK Design Manual for Roads and Bridges (DMRB) qualitative capacity definition -
“capacity is defined as the maximum sustainable flow of traffic passing in 1 hour, under
favourable road and traffic conditions.” (DMRB, 1999)

The DMRB provides look up tables that feature traffic capacities for a range of road
types, road widths and number of lanes. A manual survey of satellite imagery was carried
out to assess the lane count, estimate the road width for each of the ATC locations and thus
provide an estimated capacity by this DMRB definition. However, such a method was deemed
unacceptable due to the uncertainty in what constitutes ‘favourable road and traffic conditions.’

Instead, a more nuanced definition was adopted from Spiess (Spiess, 1990) which defined
capacity as the volume at which congested speed is half the free flow speed. The paired Google
and ATC data was queried to find the estimated volume when the vehicle’s speed was 50% of
the free flow (minimum) journey time (time0). As a result, individual roads are given a capacity
attribution. This capacity attribution is generally lower than that from those which are more
qualitative.

Consider Figure 3.26 which illustrates the saturation-delay curve for ATC locations 19E,
35S, 19 (both) and 15 (both). The top left figure presents the raw saturation time delay data with
two curves, the BPR function and a third order polynomial regression function (Ad j.R2=0.73)
for the given data. The function derived from the empirical data closely matches the BPR
function with some small deviances at very low and very high saturation ratios. In this example,
the road experiences a healthy amount of demand and this is reflected in a maximum saturation
of less than 120%.

Other locations experience much higher peak loads, resulting in a different functional
relationship. Figure 3.26 top right presents the saturation time delay curve for ATC location
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35S. This road experiences higher demands than ATC 19E and exhibits saturation levels
approaching 150%. In this case, the BPR function deviates significantly from the empirical data
from 50% saturation and approaches a 2-fold time difference as it approaches a saturation level
of 150%. For this particular location the empirical data suggests that an increase in volume
does not have as significant effect on journey times as the BPR function would model.

Different direction road lanes share similar geometry with individual characteristics and
experience different demands at different times. A comparison can be made of their individual
saturation delay curves in order to assess their individual characteristics. Figure 3.26 bottom
left illustrates location 19 in the eastbound and westbound directions. The two directions
exhibit distinct behaviour despite being the same road. The westbound direction exhibits large
time delays at high saturation levels, peaking at a 5-fold increase over free flow journey time.
The eastbound direction does not have such a time delay peak. As a result, their individual
regression lines differ, with a steeper curve westbound and a gradual curve eastbound. The
BPR function falls between these functions and reflects what is close to an average condition
when collectively considering both directions.

Figure 3.29 bottom right displays ATC location 15 where again distinct directionally
dependent behaviour is exhibited. The Northbound direction exhibits a higher capacity to
absorb traffic volume, showing a lower rate of time delay increase for a substantially larger
increase in saturation. Saturation levels peak at nearly 2 illustrating that the use of the Spiess
(Spiess, 1990) methodology for capacity definition has a significant impact on saturation. Such
a metric would generally not be exhibited using the kind of qualitative definitions discussed
previously. There is a contrasting relationship to the BPR function. It is shown to highly
overestimate the time delay from the point of 50% saturation. It is clear that both lanes exhibit
a greater capacity to accommodate increased vehicle demand with a reasonable time-delay than
the BPR functions predicts.

Upper & lower bounds

Volume delay functions have significant issues at their lower and upper bounds. At the
lower bound, there is the challenge of distinguishing between vehicular volume up to the
point of free flow and at the upper bound limiting vehicular volume by the maximum flow
capacity. In the lower bound a probabilistic method can be employed to handle the uncertainty
in vehicle volumes. The raw DfT ATC traffic counts provide vehicular volume distributions
24 hours per day and as such those points which fall in the lower bound, generally late night
and early morning can be used to define a volume distribution. Thus, in the situation where a
volume delay function is employed to estimate the traffic volume for a time-delay ratio of 1, an
estimated traffic volume can be given dependent on the time of day of the query.
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Fig. 3.26 Saturation time delay curve ATC 19 Eastbound (top left), 35 Soutbound (top right),
19 (bottom left),15 (bottom right)
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The upper bound poses a different challenge. The peak exhibited journey times (defined
here as > 3 times free flow journey time) are usually attributable to external factors and not
simply vehicle to vehicle interactions. Examples of the external factors include road traffic
accidents, weather events or road maintenance. In such situations it is possible for journey
times to reach many times the free flow journey time. For illustration, ATC 11N had a journey
time 6.85 times greater than the free flow journey time on the 1st March at 9am. A cached
internet search highlighted emergency road works at this location due to a burst water main
(http://bit.ly/1ZYxzQ0). In such a case the estimated vehicle volumes are greatly overestimated
by the volume delay function and there is therefore a need to present a constraining factor,
maximum flow capacity.

Table 3.8 Upper & lower bound distribution of volume delay ratio analysis

Bound Definition Percentage

Lower < 1.1 time ratio 7.56%
Upper > 3.0 time ratio 1.14%

In order to assess the frequency of this challenge the data was analysed to better understand
the frequency of the lower and upper bound conditions. The results are presented in Table 3.8.
For the lower bound a conservative estimation was taken with the frequency of time ratio less
than or equal to 1.1 in order to capture possible driving style fluctuations above the free flow
journey time. These values constituted about 7% of the total sample. The upper bound, defined
as greater than or equal to 3 times free flow journey time was about 1% of the sample. This
illustrating that the lower bound conditions are relatively rare in a high density, high demand
area such as London and that this condition is only ever met at periods of little concern, late
night and early morning. The upper bound conditions were even more rare, at 1% of the sample.

In conclusion, the lower bound problem constitutes an issue at times of little concern
and very low demand, late night and early morning. A probabilistic solution can be used to
interpolate and provide estimated values if needed. On the other hand, the upper bound problem
is a much less prevalent than the lower bound problem but is much more profound in that it has
a huge impact on travellers and generally hits at high impact ‘rush hour’ times. A constraining
factor is required to contain the volume delay function in such a case. Another feature of upper
bound conditions is that they involve a large number of travellers (in contrast to lower bound
conditions) and as such their impact is more significant. The incidents that lead to the upper
bound issue are discussed in terms of possible data sources and predictive inclusion illustrated
previously.
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Saturation-speed relationship

The vehicle speed can be plotted against the saturation ratio in order to relate the impact of
vehicle volume on the resulting vehicle speed. The saturation-speed relationship for ATC
location 19E is illustrated on the left in Figure 3.27. A third order polynomial fit is given for
each direction (Ad j.R2 Eastbound = 0.84, Ad j.R2 Westbound = 0.74) of the data is presented
in contrast to the BPR function. The empirical data shows a significant overestimation by the
BPR function at low values of saturation, showing that average speeds do not approach the
given speed limit on this road. The function’s converge at a saturation level of 60% to the
Eastbound lane and match relatively closely at higher levels of saturation. Again, it is clear that
the roads have unique behaviour dependent on directionality. They share the same shape but
the westbound lane exhibits speeds 4 m/s slower than the eastbound lane at the same saturation
ratio. It also shown again that the BPR function over overestimates speeds at low saturation,
reinforcing the conclusion that drivers often don’t approach the road’s maximum permissible
speed even when it may be legally possible to do so. Figure 3.27 on the right presents a speed
saturation curve where the BPR curve illustrates a different shape to that of the empirical data.
Again, it overestimates vehicle speeds at low saturation levels and predicts a larger range of
speeds than those exhibited. The differences between the north and southbound lanes is again
present, although not to the same degree as ATC 19. A relatively constant 1.25 m/s speed
difference is found between the two-lane directions for the same saturation level. The BPR
function is highly dependent on the free flow journey time which has been defined as a function
of link speed and length. The shape of the BPR function reasonably matches the empirical data
in these cases but often presents locational errors in those sites were the speed limit is rarely, if
ever met by drivers in real-world conditions.

3.2.5 Discussion

In many cases, the plots generated in this study presented empirical data that did not match
the conventional macroscopic understanding, as epitomised by the BPR functions. For each
direction and each individual site, a third order polynomial fit was generated to create context
specific saturation delay and saturation speed functions. The Ad j.R2 for these generated
functions has been plotted as a probability frequency distribution function (density) plot in
Figure 3.28 in order to assess the confidence of the derived functions. Interestingly the saturation
speed functions exhibited greater predictive ability than the saturation delay functions. The
speed metric is derived from the time-delay metric by considering the fixed length of the road,
thus the two functions share a similar shape. It is clear that some derived functions have low
confidence and there are external unknown factors that have not been considered.
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Fig. 3.27 Speed saturation curve ATC 19 (left) and 66 (right)

Example scenario & possible factors

Figure 3.27 presented a speed saturation plot for ATC66 in both directions. In an attempt to
better understand and possibly explain this distinct directional behaviour, satellite photography
and street level photography of the road was assessed. Figure 3.29 shows a satellite image of
ATC66. The red marker gives the location of the ATC counter itself and the two blue markers
illustrate the origin/destination location (dependent on direction) for the Google Directions
API request. The speed saturation plot (Figure 3.27) shows a significant speed reduction for
traffic in the southbound direction to that of traffic in the northbound direction. From the
satellite imagery and street view imagery (Google, 2016d) possibly explanatory factors can be
identified:

1. The southbound lane features on road parking

2. The southbound lane features a large bus stop and taxi lay-by (for Leytonstone Station)
and a smaller bus stop lay-by

The larger bus stop and taxi lay-by serving Leytonstone is a significant geometric feature
that is likely to have heavy impacts southbound traffic as buses/taxis leave and enter from both
directions on the road. The second smaller bus stop lay-by and on-road parking may also have
an impact, albeit in a smaller way to the traffic speed in the southbound direction. Such factors
may explain the exhibited differences from the location device informed journey data and thus
permit their inclusion in an informal way.
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Challenging scenarios

A subset of roads presented results that did not resemble previously defined functions. Consider
Figure 3.30 which presents the saturation time delay curves for ATC location 9 in both directions
on the left. Visually it can be seen in the lower part of the plot that there are the same general
trends discussed in Section 3.2.4 but with a large amount of highly variable journey time outliers.
There are over 20 points that exhibit journey times over twice the length of the minimum
exhibited journey time, peaking at 7 fold increases. These outliers result in low correlations
for a second order polynomial fit (Ad j.R2 of 0.071 southbound and 0.16 northbound). Such
extreme differences may be explained by events such as weather or road traffic incidents, for
example a road traffic collision or road flooding as a result of high level of precipitation in a
short period of time. Figure 3.30 presents the saturation time delay curve for ATC 67 in both
directions on the right. A chaotic pattern of saturation time-delay data is given and little order
is evident. Two second order polynomial fits are presented and as is visually evident offer little
in the way of a robust function, presenting an Ad j.R2 of 0.05 northbound and Ad j.R2 of 0.22
southbound respectively.

Fig. 3.28 R2Ad j probability density function for derived saturation-delay and saturation-speed
functions
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Fig. 3.29 Satellite & Street View images of ATC 66 (Maps, 2017)

Fig. 3.30 Saturation time delay curve ATC 9 (left) and 67 (right)
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Influencing factors

It is clear from these plots that there are factors not considered in this analysis that may
help explain the unexplained variations. In Section 3.2.5 the existence of public transport
infrastructure and on-road parking were identified as being potentially explanations of the
distinct southbound northbound behaviour on that road. A range of possible factors have been
identified:

1. Vehicle type

Further work is planned to assess the impact of the vehicle type. In this paper each
vehicle has been attributed equally despite the clear distinction between the interactions
of a car and another car compared to that of a lorry to a car (Vap and Sun, 2007). A
wide variety of vehicles mixes are exhibited on different road types and such differences
should be considered. The use of statistical vehicle mix sampled by road type (DfT,
2012b) was discounted for this study due to the small sample size of such statistics
compared to the resolution of the data used here. The use of traffic cameras with number
plate recognition and sufficient privileges to the Driver and Vehicle Licensing Agency
database would enable the disaggregation of vehicle type at a similar spatial and temporal
resolution to the Google Directions and DfT ATC data presented here.

2. Weather

Weather events may impact on journey times by impacting on the performance of the
vehicle, the performance of the road and/or the performance of the driver. Ongoing
research at the University of Cambridge is combining a large dataset of Google Directions
journey times with data from the UK’s Met Office NIMROD precipitation dataset (Office,
2003) in order to assess the relationship between these variables. At the microscopic
level it is known that an increase in precipitation increases journey times as a result
of increased risk and the resulting decrease in vehicle speeds to compensate for this
(Mashros et al., 2014).

3. Road incidents

Road works and road traffic collisions can lead to decreased or even zero capacity
on a road link, resulting in increased saturation and thus impacting on journey time.
Depending on the warning before such an event, the vehicle traffic may have the ability to
adjust to this information, resulting in a greater distribution of traffic, leading to mediated
travel times. Alternatively, an accident may occur and not enable any warning to be
given to other road users until they are committed to their route choice, resulting in large
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journey time increases, perhaps explaining phenomena such as that exhibited in Figure
3.33. A method incorporating different accident and road works databases with Google
Directions data is currently being investigated.

4. Road geometry, type & land use

Different road layouts may result in an increase in the complexity of vehicle interactions.
For example, the curvature of a corner and the road surface quality will impact on the
speed of a vehicle. The surrounding land use will likely also impact, adding safety
concerns (for example a school or leisure centre) again impacting on vehicle speed. The
inclusion of such factors poses many challenges, the size and complexity of the data plus
the uncertainty and variability in how drivers react to the data.

In Figure 3.29 a series of geometric factors are displayed as part of an attempt to explain
different behaviour on the same road dependent on direction. The factors discussed there,
on-road parking and bus lay-bys may be quantitatively captured using machine vision
and data sources such as Google Street View.

3.2.6 Conclusions

A range of context specific saturation time-delay, speed saturation and journey time distribution
curves for a range of different locations and road types have been generated. Specific examples
have been presented here for discussion and all generated functions and plots are available for
inspection here. In the most practical sense some of these functions may now be used in the
traffic assignment stage of the traditional four step model. In some cases, the data presents
clear evidence that unknown factors, such as those listed in Section 3.2.5, have a significant
impact and warrant further investigation. In these cases the derived functions and indeed any
standardised function have been shown to deviate significantly from empirical data and as such
their use should be considered with care. This said, the probability frequency distribution in
Figure 3.28 describes the significant collective correlations between the ATC traffic count data
and that of the Google journey times, across a range of sites, presenting evidence which goes
some way to validate the Google data and illustrate the collective value of this method. The data
used here shows promise in considering the tangible factors which impact on road performance,
such as local geometry, bus stops and so on, but that have historically been too challenging to
be considered. These data sources have longevity, exist at close to real-time and in the case of
the Google Directions data, relatively low cost with little or no capital expenditure required
for its harvesting. These methods may be employed over a long time horizon and at a finer
temporal resolution in order to better understand the temporal and spatial trends as well as the
influencing factors such as sporting occasions and weather events. It can also be used to do
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real-time vehicle emissions estimations and modelling, as is being investigated presently. The
automation of this method over longer time horizons may lead to explanations for the issues
discussed previously and highlight areas that require investigation in order to better understand
the performance of road infrastructure.

3.2.7 Summary

1. Hypothesis

Google Directions API data can be combined with DfT ATC data to create context specific
saturation time-delay, speed saturation and volume delay functions. Such functions may
be used within traditional modelling paradigms and more modern dynamic models in
order to simulate vehicular interactions.

2. Novel contributions

The method developed here has been shown to relate traffic volume data from counters
to journey time data from Google in a statistically significant way. The result is functions
which may be used to better consider local factors than the standard Bureau of Public
Roads methods. This analysis also provides part validation to the Google Directions API
data discussed in the previous section.
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3.3 Quantification of public transport performance

Public transport networks in cities such as London are inherently complex. Journey times,
routes and travel modes for a given origin and destination are more challenging to compute as
shortest path algorithms must feature more considerations than they do for the road network.
The influence of mobile technology is pronounced here, as users lean on algorithms for modal
and route decision making. Transport operators such as TfL have invested in real-time route
information technologies and there are dedicated (e.g. CityMapper) and more general (e.g.
Google Maps) apps which aid and inform traveller decision making. This section investigates
how these data feeds may been used to derive temporally dynamic network statistics in the
literature. A novel application combining two types of data analysis from the literature for the
case of London is presented.

3.3.1 Literature Review

3.3.2 Available data feeds

Many transportation authorities now provide information on the status of their services at
different temporal resolutions. This is often published on a website, via social mediums such as
Twitter, as email updates or as raw feeds that may be utilised by software developers, such as
CityMapper or Google Maps. Figure 3.31 shows one such feed being used to display real-time
arrivals at a station.

Fig. 3.31 Example TfL service status feed

Transport for London (TfL) were one of the first to adopt an open access policy to their
data feeds in an attempt to encourage developers to create innovative services to aid users.
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TfL’s datasets include real-time feeds, fixed datasets and transparency orientated datasets (ODI,
2016).

Similarly to the Google Directions API data discussed previously, these data sources are
generally made available for individual traveller use. Despite this, they may also be polled over
long periods of time, at fine temporal resolution, in order to quantify how different services
change with time (e.g. (Jariyasunant et al., 2011), (Antrim et al., 2013)). Some of these data
feeds are available at one minute temporal resolution and thus it can be possible to capture the
highly evolving nature of the transport network by harvesting and quantifying these metrics.

This section will consider two distinct data types:

1. Real-time status feeds

2. Schedule feeds

Real-time status feeds

A range of TfL status feeds are available at different temporal resolutions through an API. A
Hypertext Transfer Protocol (HTTP) request can be programmatically scheduled for polling at
the refresh rate of the API they are querying. The response to this HTTP request can then be
stored and archived in an automated way. The TfL feeds return Java Script Object Notation
(JSON) objects which are unique to the feed itself. Table 3.9 lists relevant TfL feeds and their
refresh rate.

Table 3.9 TfL feed summary

Feed Temporal resolution

Bus status 1 minute
National Rail status 1 minute

Tube, Overground, DLR, TfL Rail status 1 minute
Bike point status 5 minutes

Road status 5 minutes
Air quality 60 minutes

As an illustration, a raw individual record from the tube status feed on the 1st December
2016 at 16:04 is shown in Figure 3.32. This particular record indicates that there are minor
delays on the Circle line, as a result of signal failure at Gloucester Road.

A parser may be set for the specifics of each given feed in order to programmatically handle
the incoming data. In the case of the bus, national rail, tube, overground, DLR and TfL rail
feeds this involves finding the qualitative level of disruption, the type of disruption, the spatial
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Fig. 3.32 Example tube feed status (1st December 2016)
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bounds of the disruption (for example, from station x to station y) and the temporal bounds (e.g.
from 17:00 to 17:50]).

Schedule feeds - GTFS

Beyond these real-time feeds there are the planned schedules which are updated over longer
time horizons. Such schedules include planned engineering works and may be considered as
the idealised functionality, capturing the designed temporal differences in journey times as an
output of timetabling and service changes.

The General Transit Feed Specification (GTFS) is a a standardised format for public trans-
port schedules and associated geographic information (Google, 2016c). The GTFS supports
multiple transport modes and is used widely by transportation operators to share schedule
information with their users, predominantly through the Google Maps (Google.com/maps)
service. The standardisation of the specification and the simplicity of its structure has led to its
use in applications beyond that relating to individual journey support (Google, 2016c). The
GTFS was an important step in the challenge of synthesising multi-modal information into one
usable format (Antrim et al., 2013).

The GTFS consists of a series of text files bundled in a compressed .zip file. Of these text
files, 6 are required and 7 are optional. The different required and optional files are listed,
defined and tabulated in Table 3.10 and the overall architecture of the GTFS is graphically
illustrated in Figure 3.33.

In the UK the GTFS is not officially available from either operating companies, the Associ-
ation of Train Operating Companies (ATOC), the Department for Transport (DfT) or Transport
for London (TfL). However, since timetabling information the official operators in available
under public sector information licenses the GTFS may be created separately. In the case
of the UK rail network, this is done weekly by volunteers and published on the gbrail.info
website every Saturday morning. This GTFS file is for the entirety of the UK and it is thus
necessary to first filter the data not relevant to the Greater London Area. It is also possible to
compute a GTFS file specifically for London using TfL’s feeds and free, open-source tools (e.g.
(CommuteStream, 2016).

3.3.3 Performance metrics

The data types described in this section are the focus of many research groups both in industry
and academia. A large range of tools exist in the open source community that may be leveraged
to compute a range of statistical metrics for a given city, region or area. The standardisation of
the GTFS and its now de-facto status as the format of choice is in no small part responsible
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Fig. 3.33 General Transit Feed Specification (GTFS) (Google, 2016c)
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Table 3.10 GTFS file specification

File Required Defines

agency.txt Required One or more transit agencies that provide the data in this
feed.

stops.txt Required Individual locations where vehicles pick up or drop off pas-
sengers.

routes.txt Required Transit routes. A route is a group of trips that are displayed
to riders as a single service.

trips.txt Required Trips for each route. A trip is a sequence of two or more
stops that occurs at specific time.

stop_times Required Times that a vehicle arrives at and departs from individual
stops for each trip.

calendar.txt Required Dates for service IDs using a weekly schedule. Specify when
service starts and ends, as well as days of the week where
service is available.

calendar_dates.txt Optional Exceptions for the service IDs defined in the calendar.txt file.
If calendar_dates.txt includes ALL dates of service, this file
may be specified instead of calendar.txt.

fare_attributes.txt Optional Fare information for a transit organization’s routes.
fare_rules.txt Optional Rules for applying fare information for a transit organiza-

tion’s routes.
shapes.txt Optional Rules for drawing lines on a map to represent a transit orga-

nization’s routes.
frequencies.txt Optional Headway (time between trips) for routes with variable fre-

quency of service.
transfers.txt Optional Rules for making connections at transfer points between

routes.
feed_info.txt Optional Additional information about the feed itself, including pub-

lisher, version, and expiration information.

for this fertile research environment. It is noteworthy that TfL do not publish in the GTFS
format and this in itself is likely a legacy of their own efforts in the open data realm before
standardisation had occurred. Beyond the GTFS, there is the context specific nature of real-time
feeds and these therefore do not lend themselves as easily to standardised assessment.

This section consists of further exploration of these two distinct data feeds individually and
then moves to the merging of these fields in an attempt to capture the context specific nature of
the real-time feeds in the wider, network level nature of the GTFS. The analysis of the real-time
feeds and wider GTFS statistics will first take a general, London wide focus. After this, specific
focus is made to the hubs (Heathrow, St Pancras and London City) relevant to the identified
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case study in Chapter 2 and thus follows a similar pattern to the analysis in Section 1 of this
Chapter.

Real-time status feed statistics

Of the feeds harvested in Table 3.9, the Underground (tube) statuses and the bus statuses were
taken as the most relevant. The Underground carried 1.34 Billion and the bus network 2 Billion
passengers in 2016 (TfL, 2017).

London Underground

TfL have 8 service categories for the London Underground - Good Service, Service Closed,
Part Closure, Minor Delays, Severe Delays, Part Suspended, Special Service and Suspended.
The TfL feed for tube status is available at 60 second resolution and this may be analysed
in order to compute some basic statistics on service reliability, for a given line or for the
Underground as a whole. As an example, consider Table 3.11 which shows the percentage of
time spent in Good Service for the Piccadilly Line from January to November 2016. This is
disaggregated again into daily proportions in Table 3.12.

Table 3.11 Piccadilly Line Good Service Reliability, 2016

Month Good Service

January 73.79%
February 77.11%
March 72.88%
April 82.88%
May 81.71%
June 83.73%
July 77.96%

August 80.01%
September 76.07%

October 69.48%
November 58.06%

This illustrates interesting seasonal trends, with the Winter months exhibiting poorer
performance than the summer months. However, since the feeds are available at 60 second
resolution it is possible to assess this at much finer resolution, for each of the different tube
lines, week to week and month to month. In Figure 3.34 the daily service status for each
line, across one week (January 23rd-29th 2017 ) is presented in the top image. Each daily
chart histogram shows the different proportions of time spent at each service status. A few
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Table 3.12 Picadilly Line Good Service Reliability by day, 2016

Day Good Service

Monday 84.09%
Tuesday 86.37%

Wednesday 87.63%
Thursday 82.29%

Friday 84.01%
Saturday 86.55%
Sunday 89.06%

planned events can be seen on Saturday and Sunday, with both the Jubilee and Metropolitan
lines illustrating Part Closures for the entire period. Severe delays for the Central line and
Suspension on the Waterloo & City line are the most significant, non-weekend and non-planned
events on the 26th. The 27th presents a clustering of Minor Delays across most lines.

In Figure 3.35 the average weekly statuses are shown, across the period of one month
(weeks 48 - 52 2016) in the bottom image. The weekly distributions discussed previously are
not evident, but more macro trends can be seen. Severe delays on the Piccadilly Line are shown
from week 48-50, as a result of the "Wheel repair" maintenance issues which plagued the line
in late 2016 (Standard, 2016). Interestingly, the Planned Closure’s which are shown in week 51
illustrates the full closure of the tube service over Christmas day (the only day of the year).

This may also be considered in the context of the proportion of time spent as "Good Service"
as this is the level for which modelling inputs are generally derived on. That is to say, it is
assumed that the scheduled timetable is adhered to and that no deviations occur. A probability
density function may used to illustrate the relative probability of "Good Service" for each of the
lines, over a sample period of 4 months (November 2016 to March 2017) and is shown in Figure
3.35. The Piccadilly line’s issues in late 2016 result in the widest distribution, showing the
lowest proportion of time spent at "Good Service". Contrastingly the Northern, line’s narrower
base illustrates a very different and more reliable "Good Service" profile. The ordered mean
and median proportion of time in "Good Service" is shown in Table 3.13. Again, the Northern,
Central and Jubilee Line’s are shown to have the highest Good Service values. The Piccadilly,
District and Waterloo Lines present mean Good Service proportions of 60/70%. To put this in
context, two times out of five a traveller on the Waterloo line will be faced with some form of
restriction over this study period.

London Buses
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Fig. 3.34 Histogram plot of service status, disaggregated by line, daily and over one week
(week 4, 2017) (top) and Histogram plot of service status, disaggregated by line, weekly and
over one month (month 12, 2016) (bottom)
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Fig. 3.35 Probability density function for "Good Service", disaggregated by underground line
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Table 3.13 Median and mean proportion of time spent as "Good Service" per underground line

Line Mean Median

Northern 84.65% 87.73%
Central 82.65% 87.90%
Jubilee 81.89% 87.84%
Victoria 79.99% 86.73%
Bakerloo 79.2% 85.47%

Hammersmith & City 75.83% 85.95%
Circle 73.75% 84.36%

Metropolitan 71.59% 77.14%
Piccadilly 70.08% 82.00%
District 69.16% 78.66%

Waterloo & City 62.73% 74.08%

There are significantly more bus services (>700) than underground rail services (11) and it
is therefore more difficult to show reliability on a service basis. The history and evolution of
London bus services also makes it challenging to cluster routes, as often similar bus numbers
have little or no relation to each other. In some cases, it is even possible to relate an existing
bus number to a historic predecessor from the horse drawn carriage era (TfL, 2009).

The percentage time spent as "Good service" and "Special Service" is shown in Figure 3.36
for the 700 bus services. Clustering of similar bus services sharing special service status is
evident, as bus numbers which share similar origins, destinations or major arterial roads tend to
exhibit similar disruptions.

Issue causes

The 7 broad statuses published by TfL present a mixture of qualitative and quantitative
context to different issues on the line. These range from planned closures (e.g. Christmas day)
to planned maintenance (e.g. weekend works) to unplanned incidents (e.g. signal failure). The
TfL feeds come with labelled string explanations, with varying and non standardised degrees of
information. An exploratory word search was carried out on all of these explanations in order
to get present a qualitative view on the kind of issues which are more prominent and result in
delays of varying degrees and is shown in Figure 3.37.

This section has illustrated statistics from real-time feeds which present a challenge to
the assumption that an idealised timetable is an accurate representation of a public transport
networks performance. Public transport networks in cities of London’s complexity exhibit tem-
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Fig. 3.36 Percentage time spent as good service, per bus service



3.3 Quantification of public transport performance 107

Fig. 3.37 String analysis of service disruptions
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porally and spatially dynamic behaviour which produces sub-idealised behaviour for significant
proportions of the time.

Schedule feed - GTFS statistics

As was previously discussed, the GTFS may be unofficially generated. In the case of London,
the following .txt files are generated - agency, calendar, routes, shapes, stop times, stops and
trips. Agency describes the organisations responsible for services (e.g. TfL), calendar and
stop times explain the schedules, routes explains the different routes (e.g. bus route / rail line),
stops explains the locations of bus stops, stations and trips explains the individual services
themselves

A sample GTFS file is extracted arbitrarily (12/11/2016) and exploratory analysis carried
out to derive some basic statistics on modes and times of service. The number of routes,
disaggregated by type is presented in the top image of Figure 3.38. Bus routes are by far the
most popular (672 routes), followed by rail (26), underground (12), ferry (9), tram (2) and
cable car (1). Routes themselves are time-independent, it is the trips along a route which is
time-dependent and ultimately the service itself of interest to travellers. A trip operates on
a route and explains the temporal dimension of the previously specified route. For example,
a trip may occur at time x and on a route y. Figure 3.38 presents the number of services,
disaggregated by mode on the bottom. Here, the frequency of rail (underground and other)
services compensates for the low number of routes in relation to that of the bus network. This
is consistent with TfL’s macro level ridership statistics (TfL, 2017). A trip operates on a
route and explains the temporal dimension of the previously specified route. For example,
a trip may occur at time x and on a route y. The frequency of rail (underground and other)
services compensates for the low number of routes in relation to that of the bus network. This
is consistent with TfL’s macro level ridership statistics (TfL, 2017).

The tabular format of the GTFS is useful for generating high level, macro statistics. The
transformation of the GTFS into a graph representation allows for a data model which enables
a more nuanced interrogation of the public transport supply:

1. Extract stops from a trip

2. Find the service_id for the given trip_id

3. Find the calendar information for the given service_id

4. Generate the timetable information at the level of a day

5. For each timetabled stop_time, generate a temporally explicit edge for a given day
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Fig. 3.38 Number of routes (top) and trips (bottom) disaggregated by mode in London



110 Using crowd-sourced real-time data to quantify infrastructure performance

6. Compute journey time from respective departure and arrival time stamps.

An example output of this process is given in Figure 3.39.

Fig. 3.39 Atomic GTFS edge data example

Since multiple trips and services may offer connectivity across unique vertices, the generated
graph data structure timetable information must be merged along unique edges. An example
output from this is presented in Figure 3.40.

The formation of the GTFS into the above data structure permits for efficient querying. The
headway between different services by a given mode, on a given edge may be computed and
is presented in Figure 3.41. Unsurprisingly, the Underground is shown to exhibit the lowest
service headways and the Ferry shown to exhibit the largest. There is clear aggregation around
different headways, with 5, 10, 15, 20, 30 and 40 minute headways presenting as very common.
In Figure 3.42 the same analyses is presented, but with disaggregation between weekdays and
weekends. In total, there are less services on the weekend, and these services generally have
lower frequencies.

This data is updated weekly and small changes may be seen in the number of stops,
frequency of services (trips) and even the location of stops. However, the issue with the static
nature of the GTFS inputs identified by (Catala et al., 2011) is clear in that these changes are
hard to plot in a meaningful way.

Journey level statistics - hub travel

The previous sections describe the use of two datasets which when considered in tandem may
represent network level information at fine temporal and spatial resolution. The real-time status
feeds offer localised but very fine temporal resolution information. Conversely, the schedule
feeds offer wide spatial resolution but with crude temporal resolution, a limitation of the GTFS
being the static nature of the input data (Catala et al., 2011). The individual event(s) captured
previously have a macro impact on the network. These feeds must be interpreted and used to
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Fig. 3.40 Merged atomic GTFS collated edge data example
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Fig. 3.41 Probability density function of service headways by mode
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Fig. 3.42 Probability density function of service headways by mode, by weekdays (top) and by
weekends (bottom)
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compute what they mean for the public transport graph. For example, the closure of a given
rail link must be represented in the graph that a modelled user may be presented with. These
may be graphically shown as in Figure 3.43 and contrastingly conceptualised as the following:

1. Micro impacts - Capture individual changes and their respective cause (if known)

2. Macro impacts - Quantify the influence these collective individual impacts have on
network performance

Fig. 3.43 Combining static and real-time feeds

Beyond the open source and academic community, this data is available as a service. The
process discussed here is carried out by Google and their network representation may be queried
through the same API as that used in Section 1 of this chapter. Thus, it is possible to query the
Google Directions API in a similar method to that shown in Section 1 of this chapter for public
transport routing. Exactly the same temporal (Table 3.2) and spatial (Figure 3.6) resolution
specification presented and discussed in Section 3.1.3 was used to query the Google Directions
API for public transport routing. In the same fashion as the Directions API section the spatial
and temporal of the generated dataset may be assessed.

Temporal Coverage

1. Average speed

The average speed was computed at hourly slices across the entire dataset and plotted, as is
shown in Figure 3.44. Average speeds increase during the working day and peak at 5pm, with
increased service frequencies and the existence of express services at peak times are responsible
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Fig. 3.44 Public transport hourly average speed over study period
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for this peak. The trend is notable in that it is the inverse to that for driving as was shown
previously in 3.1.

2. Journey time distribution

Four contrasting sample plots of journey times, over the 5 week study period were extracted.
In Figure 3.45 a journey to St Pancras is shown from LSOA E01001682 at the top. The
minimum journey time is shown to be around one hour and the maximum around 15 minutes
slower. Neither the weekly or daily plots show an obvious pattern. In Figure 3.45 the bottom
image presents a shorter journey to the same destination. In this case, the range is around the
100 second mark and daily/weekly patterns are clear. The quickest journey is shown to be in
the morning and the slowest in the evening. In Figure 3.46 a considerably longer journey to
Heathrow is shown in the top image. The minimum journey time is just over an hour and the
maximum journey time is nearly 2 hours. Generally, the morning is seen to exhibit the quickest
journey times with the evening showing the slowest. Lastly (Figure 3.46) a medium length
journey to London City Airport is shown in the bottom image. A general daily pattern with late
afternoon/evening peaks in journey times is exhibited. The range in journey times is shown to
be around the 10 minute mark.
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Statistical exploration

Statistical analysis is required to provide insights into the variations within this large dataset.
As with the road journey times generated via the Directions API, these are broadly defined as :

1. Mean journey time, speed and distance

2. Ratio of maximum to minimum journey time

3. Standard deviation & variance of journey time

1. Mean journey time, speed and distance

In Table 3.14 we see the mean journey times, journey speeds and journey distances for each
hub. Heathrow exhibits the longest mean distance, fastest mean speed and longest mean journey
time. Despite exhibiting the fastest mean speed, the Heathrow journey’s struggle to decrease
mean journey times significantly compared to the other hubs as a result of the increased mean
distance. These are also shown per hour of the day in Figure 3.47.

Table 3.14 Mean journey times, speeds and distances per hub - public transport

Hub mean journey time mean journey speed mean journey distance

Heathrow Airport 5386 seconds 7.07 m/s 37.24 km
St Pancras International 2670 seconds 5.94 m/s 16.16 km

London City Airport 3785 seconds 5.87 m/s 22.34 km

2. Ratio of maximum to minimum journey time.

A probability density function illustrating the ratio of maximum to minimum journey times
is shown in Figure 3.48, for the three different hubs. Distinct behaviour is evident for the three
hubs, with Heathrow exhibiting the narrowest distribution with a medium of approximately
1.8. St Pancras and the City Airport show fatter distributions with longer tales of increased
maximum to minimum journey time ratios. It is evident from all of these plots that there are
large possible changes in journey times for static origin and destination pairs.

In Figure 3.49 the impact of the traditional weekend engineering works is assessed to see
the impact this has on average speeds by each day of the week. A noticeable dip occurs across
the weekend for journeys to Heathrow and a more subtle impact is seen for St Pancras and the
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Fig. 3.47 Mean journey time, per hour and per hub
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Fig. 3.48 Probability density function for Ratio of maximum to minimum journey times, per
mode (0.95 percentile)
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Fig. 3.49 Average journey speeds by day of week and by hub
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City Airport. For Heathrow this mean speed difference equates to approximately 0.5 m/s from
Friday to Sunday, before recovering again on the Monday.

3. Standard deviation & variance of journey time

The journey time distributions and maximum to minimum distributions have illustrated
the variability in journey times for routes on public transport. In order to understand more
fully the underlying dynamics a probability density function for the journey time variance and
journey speed variance may be plotted for each of the hubs. As was shown before in the ratio
of maximum to minimum journey times, the public transport network exhibits much larger
fluctuations than that of the road network. As a result, there are very significant journey time
increases that occur with more probabilistic chance than that for driving. In order to display
meaningful comparisons between hubs, these plots were constrained by those results which fall
within the 80% quantile. In the following section where comparisons are made between modes,
such a constraint is removed.

In Figure 3.50 the time variance plot, constrained to those results which fall within the
80% quantile is shown. Heathrow shows the greatest variance and St Pancras shows the least,
with the City Airport falling in between. St Pancras shows a dual peak without obvious cause.
Similarly to driving, the large variance distribution for Heathrow may be partially attributed
to its West location in relation to the other more centrally located hubs. The speed variance
plot in Figure 3.51 shows more clustering than that of the journey time plot and more of a tail
within the 80% quantile.

Fig. 3.50 Time variance density plot, per hub. left (0.95 percentile) and right (0.75 percentile)

Propensity for diversion
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Fig. 3.51 Speed variance density plot, per hub. Left (0.95 percentile) and right (0.75 percentile

A static origin and destination pair do not always output the same path at all times. In
some cases, there may be multiple possible routes with similarly competitive journey times.
By considering the polyline for a given response from the Directions API we can assess the
propensity for for different destination hubs. In Figure 3.52 the probability density function for
different unique polyline counts is shown, disaggregated by hub. Heathrow and London City
show similar behaviour, with he majority of origin and destination pairs exhibiting less than 20
possible routes. Heathrow shows a different distribution, with a mean of around 40 possible
routes. When the number of unique polylines is considered against the crow flies distance
(Figure 3.53) a strong positive correlation is shown. St Pancras and London city are shown to
exhibit the lowest number of routes and direct distances when compared the Heathrow.

3.3.4 Conclusions

This section has presented 3 distinct data sources. The TfL status feeds permit for a better
understanding of the Underground lines and buses which form a significant part of the London
transport network. The provision of this data, to aid and inform public transport users, may
be harvested and used to derive a range of real-world metrics for the system. Secondly, the
GTFS may be used to quantify macro, network level services. The merging of the GTFS
with the real-time status feeds allows for the creation of network level information with much
finer temporal resolution data. Such a representation may be queried as a service via the
Google Directions API. The robustness of the Directions API for public transport queries
illustrated a slightly higher failure rate than that for the driving version of this API (0.14%
versus 0.002%), reflecting the relative increase in complexity. The temporal limitations of the
GTFS have long been known and the specification of GTFS real-time is targeted specifically at
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Fig. 3.52 Probability density function for number of unique polylines, per hub, by public
transport
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Fig. 3.53 Scatter plot for number of unique polylines against direct distance between origin and
destination, per hub, by public transport
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the challenges highlighted in relating the real-time feeds to the network representation. Despite
this formalisation in the form of the GTFS real-time feed, uptake has been slow by transit
providers likely due to the complexity of implementation. The GTFS dataset presently doesn’t
permit for the inclusion of any form of capacity data and thus the impacts of crowding are
not measured within this methodology. However, there are now examples of this occurring in
specific cities (Google, 2018) and it may be considered in the near future.

Crucially, this section illustrated the challenges faced when assuming fixed journey times for
given origin and destination pairs. Public transport journeys illustrated significant fluctuations
and variability.

3.3.5 Summary

1. Hypothesis

London specific travel statistics may be computed from the TfL feeds and GTFS data.
Critically, a representation considering both of these distinct sources may be queried
through the Directions API and fine resolution temporal and spatial journey data gener-
ated.

2. Novel contributions

These data feeds have been shown to illustrate varying degrees of connectivity at different
time stamps. It is known that travellers make use of highly context specific information
when making a modal decision. By harvesting the real-time and weekly planned GTFS
data it is possible to reflect this.

3.4 Chapter Summary

This Chapter presented a range of different methods for computing fine temporal resolution
performance metrics for road and public transport infrastructure. It was hypothesised that the
bulk harvesting of fine resolution, individual level detail across space and time may generate a
dataset of use to the macro level, transportation practitioner. As with many recent advances
in remote sensing, this follows the theme of utilising tail-pipe data which is generated and
intended for very different applications for a higher level analysis. These methods may be of
interest to users and operators of the respective transport modes. Away from this, these methods
may be brought together in order to create a multi-modal image of the transportation network
in London. Such a representation presents opportunities for use as a model input, enabling a
modal transportation model to be informed with realistic, real-world inputs.
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In Section one, a method was designed to test if the Directions API may be used to capture
fine resolution temporal journey time data across a wide spatial resolution on the road network.
This data may be used to categorise different transportation hubs, such as airports and train
stations in terms of their relative access at different times of the day, on different days and
on different weeks as a result of congestion and other impacts. However, due to a lack of
comparable resolution data there is a validation challenge.

In Section two, a new data set was added to the outputs from section one in order to assess
how traffic counts may be related to the harvested journey times. The traditional Bureau of
Public Roads method was compared against the empirical data and observations made. This
analysis in part provided some validation for the Directions API data in section one and new
functions were derived in order to better consider local factors in volume delay relationships.

In Section three three distinct data sets were considered in order to better understand public
transport variability. Distinct statics were computed from the real-time feeds, more static GTFS
data and then the exhibited output from the Directions API at given times. Extremely large
variations were exhibited in both the nature of services and their temporal performance.

However, the methodologies discussed here come with varying computational demands that
pose unique challenges. An illustration of these data demands is presented in Table 3.14. The
following Chapter, 4 will bring these different data sources together into one unified framework
so that they may be used in a meaningful, modelling way.



Chapter 4

Framework for a modal choice and
assignment agent based model

The value of dynamic models coupled with more spatially and temporally dynamic inputs
can only be assessed when a series of technical challenges to its implementation have been
addressed. In Chapter 2, the following two distinct computational challenges were discussed:

1. The spatial (graph compute) problem

2. The agent decision making problem

This Chapter presents an agent based modelling (ABM) framework for the modal choice
and route assignment stage of the traditional four stage process. An implementation of this
framework is given for London, a series of different decision making heuristics implemented
and the computational value illustrated through a series of scaling exercises.

4.1 The framework

The data sources discussed in Chapter 3 must be consolidated into a framework from which
an ABM may be used to compute modal and route choice outcomes for a range of different
scenarios. In Figure 4.1 this is presented at a high level. Functions 1 and 2 illustrate the merging
of the spatial and temporal data into the representative temporal & spatial graph. Function 3
is the specification of a simulation seed, namely a set of origins, destinations (traditionally
taken as outputs from the trip generation and trip distribution stages or from an activity based
model). Function 4 illustrates the individual graph compute for a given agent, in a given time
step, which is then presented to the agent decision making process (function 6), with respect
to the specified decision making heuristics in function 5. The computed decision may then
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be computed against the existing graph representation through function 7, permitting agent
interactions. Functions 8 and 9 show how the simulation may be queried in order to understand
individual level decisions and how these manifest into macro level outputs. This section begins
by introducing the graph data structure which supports the temporal and spatial graph presented
in Figure 4.1.

Fig. 4.1 Modelling framework

4.1.1 Graph data structure

Graphs have long been used as an abstract representation that can describe the organisation of a
transport system. A graph consists of a set of vertices V that with a set E of vertex edges, such
that:

G = (V,E) (4.1)

In the context of a transport system, a vertex may represent a bus stop, a train station or
a road junction and an edge may represent a road or railway line. Beyond the vertex and
edge data, there is also relevant polygon data to the modelling process, such as census data or
weather data. Fundamentally, the framework must support three distinct types of geospatial
data:
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1. Vertex data

2. Edge data

3. Polygon data

This geospatial data is either temporally static (e.g. road length) or temporally dynamic (e.g.
journey time). Figure 4.2 illustrates these data types and provides illustrative examples. Often,
polygon data may be attributed to either edges or vertices, as for example, address information
is attributed to a vertex in Figure 4.2.

Fig. 4.2 Geospatial data types

A multi-layered graph may be used as a tool to model different levels of the system,
for example the road and rail networks and the relationship between these different layers.
The transport network consists of a range of modes utilising a range of different physical
infrastructure types. These different modes must be distinct in terms of their differing attributes
and behaviours but also share connections to permit access to, from and within different sub
networks. This may be graphically illustrated as is shown in Figure 4.3 where there are separate
road, bike, foot, train and bus networks with various different interchange locations.

The data methodologies described in Chapter 3 must be combined in a similar fashion to
that of Figure 4.3 in order to create a spatially and temporally realistic representation of the
London transportation network.
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Fig. 4.3 Multi layered transportation graph (source unknown)
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4.1.2 Graph data decentralisation

The key principal of the framework is that of decentralisation. Traditionally geospatial data has
been stored in a form of relational database with a specialist setup for geospatial data. Such
methods have struggled to scale as they do not inherently support the breaking up of large tasks
into smaller sub tasks. In relational databases, references to other rows and tables are indicated
by referring to their (primary) key attributes via foreign-key columns. In order to compute
the interaction between different elements, joins are computed at query time by matching
primary and foreign-keys across many rows of the tables. These operations are compute and
memory-intensive and have an exponential cost. Relational databases search all of the data
looking for anything that meets the search criteria. The larger the set of data, the longer it takes
to find matches, because the database has to examine everything in the collection.

JavaScript Object Notation (JSON) is a simple data format that allows programmers to store
and communicate sets of values, lists, and key-value mappings across systems (Bray, 2017).
JSON is document based and thus scales horizontally, rather than vertically as a relational
database does. Thus network data may be distributed across multiple JSON data files, which
allows for a decentralised system for querying, data-processing and rendering. The distributed
data system allows for easy scalability and load-balancing during computations. A simplified
data format from the Sierra-Charlie visualiser (Bak et al., 2016)) is used in this framework.

The fundamental vertex and edge data is separated from their respective attributes in order
to permit the loading of core information more efficiently. In the case of a vertex, we have a
one to many relationship to attributes. A given vertex will have many different attributes. In the
case of an edge, there is a many to one relationship, where multiple edges constitute a group of
edges (e.g. a road).

Formally, the data structure used is an adjacency list and consists of the following files:

1. Vertices

2. Edges

3. Vertex Attributes

4. Edge Groups

Vertices and edges describe the fundamental relationships which form the graph and the
vertex attributes and edge groups describe attributes for a given vertex and collections of edges
(.e.g roads) respectively. This proposed data structure is presented through an illustrative
example for London. The used data model with example records is shown in Figure 4.4.
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Fig. 4.4 Geospatial data model with example records
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4.1.3 Graph implementation for London

An application of this decentralised data file system is proposed for a unified multi-modal graph
of London. First, a road network is presented, secondly the various sub networks which form
the public transport network are presented and lastly a methodology for unifying these different
graphs is presented. An area encapsulating the 33 districts and 32 boroughs plus the City of
London, with regions bordering the M25 orbital motorway was defined. The desired outcome
is a realistic representation of the entire transportation network in the form of a graph which
is embedded, directed, weighted and labelled. This process, with some illustrative examples,
consists of the following steps:

1. Fundamental graph - vertices and edges

2. Embedded - addition of geometric positions to edges and vertices

3. Directed - addition of direction restrictions (e.g. one way road restrictions)

4. labelled - addition of various metrics associated with vertices or edges (e.g. post codes or
administrative areas)

5. Weighted - addition of temporally dynamic and static attributes to links (e.g. changing
journey times and road lengths)

The above processes may be conceptualised, with consideration to the data sources of
Chapter 2, as shown in Figure 4.5.

Spatial component - road network

Fundamental embedded graph

The UK Ordnance Survey (OS) Integrated Transport Network (ITN) (OS, 2016) was used
as the base map for the road network. The OS ITN is a comprehensive and atomic view of
the road network. This GIS data consists of a Geography Markup Language (gml) file type,
approximately 1.17GB for the London area. The verbose nature of a gml is due to the repetition
of common terms and attributes. Beyond the obvious size implications of this verbosity,
there is also the complication of inherent centralisation as the file is difficult to separate for
parallelisation. A process is therefore employed to harvest the primary geospatial information
from this gml file and then create a decentralised JSON file. This primary geospatial is defined
as vertices and edges in Table’s 4.1 and 4.2.
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Fig. 4.5 Graph building process with examples

Table 4.1 Vertices data specification

Field Format

Coordinates Double precision floating point
Unique i.d. String ("OSGB" + 16 digit integer)

Table 4.2 Edges data specification

Field Format

Origin vertex String ("OSGB" + 16 digit integer)
Destination vertex String ("OSGB" + 16 digit integer)

Unique i.d. String ("OSGB" + 16 digit integer)
Polyline List (Double precision floating point)

This data model can be graphically illustrated at the macro level, as shown in Figure 4.6.
The graphical representation of this fundamental road graph provides a visually explicit image,
with notable landmarks such as the river Thames, the Lea Valley, Richmond and Hyde Parks.
A localised micro view, shown in Figure 4.7, illustrates the fine resolution of this constructed
road graph.

The ITN also features road classification information. This information is broadly separated
by edge type and edge nature. Of the 423,541 edges on the road network, Tables 4.3 and 4.4
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Fig. 4.6 Fundamental components of road graph (macro view)

Fig. 4.7 Fundamental components of road graph (micro view)
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illustrate the different categories and their proportional representation within the study area.
These road edge labels may be visualised and different types and/or natures isolated or viewed
in tandem. A selection of views is presented in Figures 4.8 and 4.9 for illustration.

Fig. 4.8 Fundamental components of road graph, aggregated by edge nature. Top - A Roads,
bottom - Dual Carriageways
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Fig. 4.9 Fundamental components of road graph, aggregated by edge nature. Top - local streets,
bottom - Motorways
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Table 4.3 Edge terms

Type Proportional representation in study area

Motorways 0.47%
A Roads 12.63%
B Roads 3.89%

Minor Roads 12.51%
Local Streets 52.61%

Alleys 4.6%
Pedestrianised Streets 0.06%

Private Roads - Publicly Accessible 0.88%
Private Roads - Restricted Access 12.34%

Table 4.4 Edge natures

Type Proportional representation in study area

Dual Carriageways 4.04%
Single Carriageways 85.99%

Slip Roads 0.85%
Roundabouts 2.86%

Traffic Island Links 1.63%
Traffic Island Links at Junctions 3.95%

Enclosed Traffic Area Links 0.69%

Directed

Local roads are often represented as one edge despite the likelihood of bi-directional
operation. Conversely, major roads often segregate traffic in different directions and thus
are generally represented as distinct edges in the ITN. The ITN contains road restriction
information, as shown in Table 4.5. The spatial spread of those ITN edges which are one way
or bi-directional is shown in Figures 4.10 and 4.11.

Table 4.5 Road restrictions

Type Count

All restrictions 103079
One way restriction 74099
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Labelled

A vertex or edge may have a range of different associated attributes. In 4.1 the three
different data formats were presented, vertex, edge and polygon. Often, labels such as post
codes and addresses are in polygon format. For simplicity the polygon data may be attributed to
a vertex (.e.g address) or edge (e.g road name), resulting in a pure graph representation. These
attributes are presented for vertices and edges in Tables 4.6 and 4.7 respectively.

Table 4.6 Vertex attributes

Attribute Format Source

Address, borough, postcode String OS ITN (OS, 2016)
Elevation Integer Google Elevation API (Google, 2016b)

Socio-economic metrics Integer/String ONS

Table 4.7 Edge attributes

Attribute format Source

Road name, type and nature String OS ITN
Road length Integer OS ITN

Road groupings List OS ITN

The result may be graphically represented as shown in Figure 4.12. Here, a sample vertex
has been selected and the associated properties of this vertex are shown in the lower right
window. Simultaneously, a sample edge has been selected and its associated properties may be
inspected in the lower left window.

Weighted

The weight of an edge is a numerical attribute which may explain the length, travel time
or financial cost associated with the relationship between two vertices. These weights may be
temporally static, (e.g. length) or temporally dynamic (e.g. travel times).

It is at the attribution of weights where the distinct modes of transport which utilise the same
infrastructure may be considered. The road network is used by personal vehicles, private taxis,
pedestrians and cyclists. These modes share the same infrastructure, with some limitations by
type. For example, cyclist’s may not use motorways. For the identified HS1 case study public
transport and personal car were identified as the possible modes. Public transport is considered
holistically as a mode consisting of multiple modes (walking, bus, train, underground etc).
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Fig. 4.12 Labelled vertex (bottom right window) and edge (bottom left window) attributes

The first, fundamental attribute describes the physical edge distance from vertex to vertex.
This length is rarely as the crow flies and thus consideration must be made to the polyline
describing the shape of the connection between vertices. A visualisation illustrating edge
lengths by colour is presented in Figure 4.13.

In Chapter 3 the dynamic nature of journey times as a result of traffic congestion was
discussed and the use of Google Directions API data to quantify these changes proposed.
However, a significant technical challenge is presented when attempting to unify two similar
but different geospatial polylines. Google’s API responses return geospatial coordinates specific
to their underlying representation of London, something which is not publicly available. This
is most obviously different from the ITN representation in that it is using a different coordinate
projection system 1. Beyond the relatively simple task of re-projection, there is the challenge
of unifying different geospatial representations of the same infrastructure. Consider Figure
4.14 which presents a Google polyline overlaying the ITN road graph. The dark blue polyline
illustrates the Google Directions API result and the grey illustrates the underlying ITN network.
As is visually clear, there are small discrepancies between Google and ITN’s underlying graphs.
It is necessary to reconcile this two differing representations of the same physical infrastructure
in order to transfer attributes from the Google data (journey times) to the underlying graph.
The reconciliation process for differing geospatial data is known as conflation. It is apparent in

1Google use epsg:4326 and the ITN uses epsg:27700
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Fig. 4.13 Edge weight visualisation - length

this case that the light blue ITN polyline is the ITN equivalent of the Google polyline result
shown. However, a programmatic method for this process is required due to the size of the
Google and ITN datasets. This method is discussed in detail in Appendix A. The result of this
method is journey times associated with edges, as is shown in Figure 4.15. Each journey time
is represented as one key in an epoch time stamped value in the weights dictionary.

Fig. 4.14 Geospatial differences: Google versus ITN
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Of course, edges have time stamped weights dependent on whether or not they are found in
the responses from the requested Google Directions API responses. In some cases, such as a
major strategic road, many different time stamps may be available, and thus a larger number of
records are available. Contrastingly, rural roads may be mentioned sporadically, and thus few
records may be available . This lack of consistency in the amount of observations a given edge
may have is a product of the requesting formulation used here, the prevalence of certain roads
in terms of their strategic importance, plus the impact such strategic roads has on the location
device data available for a given road. The matching of the generated datasets to the graph
resulted in the distribution of observations per edge shown in Figure 4.16. In this Figure, the
road type disaggregation shows that there is a propensity for strategically more important roads
to have more observations. Thus, although there is an issue with coverage strictly, there is a
useful bias towards those roads which are of more importance.

Since there is not complete coverage, there is a need to populate edges with journey times
to cover those times for which it has no records, or in rare occasions, to give journey times
in cases where there are no observations at any time. This synthetic journey time, for a given
time stamp, may be computed dependent on other available journey times if there are sufficient
other records available. A range of different statistical methods were assessed in order to fulfil
this function and a first order spline (De Boor et al., 1978) was shown to illustrate the most
consistent results with more specific road traffic functions such as (Mullick and Ray, 2012).
Example plots are shown in Figure 4.17 where the top image illustrates an edge with many
observations, requiring limited interpolation and the bottom image illustrating an edge with
fewer observations, requiring more interpolated records.

Estimated vehicle volumes may then be computed by utilising the functions generated
in Chapter 3. The process of function specification requires consideration to which derived
function(s) are the most appropriate for a given road. Road attributes from the study in Chapter
3 may be compared to the road attributes and the closest pairing be made. This process involves
consideration to the factors listed in Table 4.8.

Table 4.8 Edge attributes used in volume-delay function pairing

Factor example

Road term A Road
Road nature Dual Carriageway
Lane count 2

No open access data source exists with lane counts for all roads and this information is not
included in the ITN by OS. The study in Chapter 3 required a manual survey to find lane counts
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Fig. 4.15 Edge with matched Google Directions API journey time weights
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Fig. 4.16 Distribution of journey time observations per edge, by edge type
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Fig. 4.17 Journey time distribution with interpolated and empirical records, over one month for
two edges osgb4000000030779794- (top) and osgb4000000031114655 (bottom)
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and from it, general heuristics are derived and used to assume lane counts across London based
on road properties such as road term and road nature.

The assumed capacity is assigned by extrapolating on road nature from those empirically
measured in Chapter 3. A generalised function for each road nature type was computed from
those measured in Chapter 3 and this function is computed against the record delay in order
to find the saturation. The saturation can then be used to estimate the traffic volume for the
assumed capacity, as is defined below:

Volumet =VolumeDelayFunction∗FreeFlowCapacity (4.2)

The result is a graph with temporal weights for journey time (either empirical or synthetic)
and computed, estimated volumes, as is shown for a sample edge in 4.18. Finally, financial costs
may be attributed to driving journeys by using RAC cost coefficients (RAC, 2016). The output
of this process is a weighted, directed, labelled and embedded graph for the road transportation
network.

Spatial component - public transport network

In Section 3.3 a series of exploratory analyses of the public transport services in London were
presented. Real time feeds were assessed to understand the variations in service reliability and
the timetable information in the General Transit Feed Specification format (GTFS) was used to
understand planned connectivity, by different modes and at different times of the day, week
and month. The statistics and analyses presented were generally system level and although
they are very relevant to individual travellers, the outputs are not directly applicable. There
is a therefore a need to abstract the GTFS format network into a weighted, directed, labelled
and embedded graph so that temporally dynamic shortest paths may be computed, in order
to integrate with the road network graph and ultimately support modelling modal choice and
assignment modelling.

Fundamental embedded graph

Network vertices may be extracted without any manipulation of the GTFS data. Full
services were split into constituent part and edges on the network were defined on the sub
sections of services which connect a given set of vertices, irrespective of mode 2. We may use
the type disaggregation specified in the GTFS to explore the relative spacial complexity of
the different modes within the public transport network. Table 4.9 illustrates the vertex and
edge count for each mode individually. Unsurprisingly, the bus network is shown to exhibit

2There are occasions where edges are served by multiple modes, e.g bus and tube
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Fig. 4.18 Sample edge with computed volumes for a given time slice
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the biggest network by a significant margin. The only non GTFS datasets used are the TfL
zone information (O’Brien, 2016) and the 2016 TfL pricing information (TfL, 2016a) to permit
pricing computations for a given route. Bus, ferry and tram services use a trip based cost,
whereas Overground and Underground services use a zone based pricing system. There is also
some pricing logic programmed to compute costs for trips across these services.

Table 4.9 London public transport network spatial complexity

Network vertex count edge count

Bus 18987 22855
Subway, Metro 270 587

Tram, Streetcar, Light rail 84 152
Ferry 22 56

Weighted

For a given edge, there are then a series of services with attributes such as journey time,
departure time, route agency, route id etc. In contrast to the individual nature of car journeys,
public transport services are centrally managed and scheduled. Thus, the quantification of
journey times on public transport infrastructure is simpler to harvest but more complex in
nature to store as there is the the added complexity of different services with different departure
times, routes and journey times.

4.1.4 Graph computations

A weighted and directed graph now exists from which shortest path computations may now be
carried out in order to act as the inputs to a modal choice and route assignment ABM. This
section will consider how the constructed graph may now be queried in an efficient manner,
before focussing on the behavioural part of decision making which dictates what information is
used and how it is used by a given individual. Ultimately, the specification of parameters for
inclusion is linked to the decision making logic of the ABM and consideration must be made to
this computation to ensure that there is consistency between the inputs and the process which
utilises the inputs.

The minimum cost or shortest path route problem is defined as the process of identifying
the lowest cost route from an origin to a destination usually in terms of distance, journey time
or by a combination of graph edge attributes. A large amount of literature exists in the fields
of routing and scheduling problems. Developments have occurred since Dijkstra presented
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Fig. 4.19 Fundamental component of public transport graph. Bus network (top), ferry network
(bottom)
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Fig. 4.20 Fundamental component of public transport graph. Rail and tube network (top), tram
and light rail network (bottom)
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Fig. 4.21 Example public transport edge record
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his path finding algorithm in 1959 (Dijkstra, 1959). A range of algorithms and software
packages may now be taken off the shelf for a range of graph problems. Driving features a
large spatially complex graph with temporally dependent edge journey times, directionally
restrictions. Public transport is less complex spatially but more complex temporally due due
to timetabling, variable service routes and a truly multi-modal nature resulting in a series of
sub graphs. The walking sub graph on the road network connects rail stations, bus stops and
stations. For a given time horizon, the network connections (edges) may be represented on a
frequency basis to simplify computations but still allow for temporal variations (e.g. morning
peak versus inter-peak). Ultimately, the minimum cost path involves a behavioural decision on
human value judgement and this framework seeks to support a range of systems rather than
pre-prescribe one. As was discussed in section 2.4.4, many modern shortest path algorithms
work on unweighted or undirected graphs (e.g social networks) and so many of the classic,
early graph algorithms are still in use day, albeit in modified forms. In Table 4.10 different
weighted shortest path algorithms are presented with their respective worst case complexities
in Big O Notation (Danziger, 2010).

Table 4.10 Shortest path algorithms and complexity

Algorithm Complexity 3 Reference

Bellman-Ford O(VE) (Bellman, 1958)
Dijkstra O(V2) (Dijkstra, 1959)

A * O(|E|) = O(bd) 4 (Hart et al., 1968)

The A* algorithm uses heuristics in order to reduce computational times and in fact, has
the same complexity as Dijkstra when no heuristic is used. Despite the significant performance
gains, it is harder to implement than Dijsktra and its implementation can often become context
specific to a given graph and not generalisable. Bellman-Ford is slower than Dijkstra, but unlike
Dijkstra it can handle negative edge weights. This functionality is usually useful for pricing
scenarios (often in aviation) where multiple edge combinations may be discounted and where
this discount manifests itself as a negative edge weight. However, TfL’s public transport pricing
does not require such a model to compute trip fares and as a result Dijkstra’s algorithm was
utilised here. The shortest path computation is carried out using Dijksra’s algorithm and using
edge journey time weights as the edge parameter. The shortest path found and it’s respective
attributes may then be presented for a specific agent within the ABM, as was graphically shown
previously in Figure 4.1.
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4.1.5 Agent decision making heuristics

In Chapter 3 a range of data sources were presented with the ambition of capturing real-world
transportation service performance. This involved the harvesting of location device informed
journey times and real-time feeds from transport operators such as TfL. In previous sections of
this Chapter, these different data sources were unified in a single framework - a multi-modal
graph data structure. This framework supports an agent based model which can compute
decisions for a given traveller in a given context. The focus of this section is what and how
such data is treated by an individual traveller and the process that occurs culminating in a
modal and route decision. This section illustrates the use of the generated multi-modal graph in
a range of decision making heuristics. As was discussed in Chapter 2, there remains a great
deal of uncertainty surrounding, firstly, what information people use when making decisions
and secondly, how they use this information. In the literature a range of decision making
methodologies were discussed. This section involves the specification of how the agent carries
out the decision making process according to different pieces of literature.

Until relatively recent times, the dominating economic paradigm has been constructed upon
the belief that an individual acts rationally to maximise their utility (Simon, 1955). This states
that an agent will maximise utility by minimising cost. In the context of a purely monetary
driven environment, this is easily conceptualised. However, a transportation modal decision
involves a wide range of considerations beyond simply the financial cost. This may involve
those metrics easily quantified such as financial cost and time cost but also those less easily
quantified such as traveller comfort or stress and how pleasant the surroundings of a given
journey may be.

A historic limitation for decision making frameworks has been realistic inputs. Often a
static, one time input is used to quantify the performance for a given piece of infrastructure.
This may be empirical data from a road survey which is often carried out over a short period
(such as one day) and then generalised or data from general functions. These inputs are
generally relatively static and do not offer realistic time dependent data. The fine resolution
spatial and temporal data discussed in Chapter 3 can first be used to give improved inputs for
simple decision making frameworks and then secondly, enable more complex decision-making
frameworks to be utilised with a view to capturing more context specific decision-making
processes that reflect the changing nature of an evolving complex transport system.

In this section, a range of decision making heuristics are implemented and the macro
level results of their implementation assessed. For the purposes of testing this, a sample
dataset formed of 200 random origins were selected for the three destinations of St Pancras
International, London City Airport and Heathrow from the multi-modal graph.
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Journey times

Instead of considering the average journey times across the entire time horizon, we consider
each time slice as an individual event, and illustrate the changing competitiveness of the
different modes. Secondly, we may disaggregate the journey times and weight them dependent
on their mode. In this case, coefficients (Table 4.11) from the (Mackie et al., 2003) study, which
are adopted by the DfT WebTAG guidance are used.

Table 4.11 Journey time type perceived cost coefficients

Mode Cost Reference

Walking 1.75 * in-vehicle time (DfT, 2014b)
Waiting 2.5 * in-vehicle time (TfL, 2016b)

Interchange penalty 7.5 minutes (DfT, 2014b)

In Figure 4.22 we can see how the relative competitiveness of the two modes varies
depending on the use of input times, or computed perceived times using the coefficients from
Table 4.11. For the given sample, it is evident that driving exhibits the dominant journey time
savings, with a greater frequency and greater range of savings over public transport. When
the perceived time cost is considered, this difference becomes ever more extreme, with more
journeys becoming faster by driving and the range increasing even more.

The above plots illustrate the macro, averaged output, however the resolution of the input
data makes it possible to assess each time step discretely and view the distribution of varying
competition between the two modes across time. A sample of one week is extracted in order
to illustrate how this varies by time of day and by day of week over the study period and is
shown in Figure 4.23. It is clear that there are significant daily fluctuations in the relative
competitiveness of each mode at different times of the day, with driving losing prevalence at
peak morning and evening peaks. This dynamic response is a direct result of traffic impacts on
driving increasing journey times, whilst public transport timetables at peak times offer reduced
journey times and increased service frequencies.

Generalised cost

Journey times are a significant factor in modal and route choice but there are factors, such as
financial cost which are highly relevant. Financial cost may be attributed to driving journeys
by using RAC cost coefficients (RAC, 2016) and TfL emissions charges and parking costs
may be included. For public transport journeys the far information previously loaded into the
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Fig. 4.22 Percentage journey difference difference between driving and public transport, un-
weighted (top) and weighted (bottom). The weighted factor methodology is shown in Table
4.11
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Fig. 4.23 Journey time comparisons of driving versus public transport at discrete times across
one week in October 2015
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framework may be used. In London, bus and tram journey’s are charged a flat rate per trip 5

and in the context of rail and tube journeys, these are charged based on the zone of the arrival
and destination. When the tangible financial costs have been included, the time costs must be
converted into a financial cost in terms of perceived value of time (e.g (Harrison and Quarmby,
1970), (Wardman, 2004)). WebTAG guidance on value of time in the UK was updated in 2015
(DfTt, 2015) and includes values disaggregated by mode, distance and role (commute, other
non-work and business travel). Since business travel allowed for disaggregation by mode and
distance, it was used.

The factors shown in Table 4.12 were utilised from this study.

Table 4.12 Value of time coefficients (from (DfTt, 2015))

Mode Value of time (£/hr)

Driving (< 20miles) 8.21
Driving (20-100 miles) 15.85
Driving (> 100 miles) 25.74

Bus 15.64
Underground & Tram 24.72

Rail (< 20 miles) 27.61
Rail (20-100 miles) 10.11
Rail (> 100 miles) 28.99

This then enables the generalised cost to be computed for each mode, in the following form:

DrivingGeneralisedCost = DrivingTime+

(DistanceDriving∗OperatingCost/NumberO f PeopleTravelling)

+(ParkingCost/NumberO f PeopleTravelling)+

CongestionTax (4.3)

PublicTransportGeneralisedCost = ((WalkingTime∗WalkingWeight)+

(WaitingTime∗WaitingWeight)+

(InVehicleTime)∗ValueO f Time)+Fare (4.4)

5This has recently changed with the introduction of a "Hopper Fare" which permits bus transfers within one
hour at no additional cost
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Figure 4.24 illustrates two sample records, one for driving and one for public transport,
with their respective computed generalised costs. In the case of public transport we can see the
constituent parts of the total generalised cost, as computed per mode and type of that mode.

Since the generalised cost is heavily dependent on the time inputs, the general trends for this
sample shown in Figures 4.22 and 4.23 continue to be apparent. In order to better understand
how the different modes compare, the probability density function of their generalised costs is
shown in Figure 4.25. Driving exhibits a left leaning distribution with a lower mean that public
transport. Interestingly, driving also exhibits the largest range.

Risk based

The data available permits the use of even more nuanced inclusion of the variations in journey
times and costs. We may consider the historic performance of the infrastructure in how we
value the journey time reliability of a given mode and this information can be used in turn to
manipulate the value of time coefficient used (as per (DfT, 2017)).

In the context of driving, reliability may be defined as the ratio of the mean to the standard
deviation of travel time (DfT, 2015c), a modified version of (Hollander, 2006), explicitly
defined as:

DrivingJourneyTimeReliability =
MeanJourneyTime

StandardDeviationO f JourneyTime
(4.5)

Public transport travel time reliability is defined in terms of the timetabled travel time, the
relative travel time lateness and the standard deviation of this lateness across time (DfT, 2015c),
a modified version of (Hollander, 2006) and may be explicitly defined as:

PublicTransportJourneyTimeReliability =
MeanLateness

StandardDeviationO f Latetness
(4.6)

where:
Lateness = JourneyTimeTimetabledJourneyTime (4.7)

Computing the lateness of a given service, relative to its timetabled journey time is non
trivial. The generation of a spatially and temporally dynamic, real-world journey time for
public transport networks is only possible by merging temporally explicit, spatially implicit
real-time feeds with spatially explicit and temporally inaccurate representations of the network
and timetable (e.g. GTFS), as was shown previously in Figure 3.52. The methodology in this
chapter has enabled the use of fine resolution GTFS data, but does not include the inclusion
of real-time feeds which explain how the service is operating in reality. This process involves
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Fig. 4.24 Example records with computed generalised costs
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Fig. 4.25 Generalised costs probability density distribution per mode
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natural language processing and is the focus of services such as Google Maps and Citymapper
(e.g. (Citymapper, 2017)). Thus, the use of the Google Directions API responses was used
in the sample dataset here, so as to illustrate the temporal fluctuations (in reality, not just as
timetabled). This then has the challenge in that it does not enable the easy connection between
exhibited journey time and planned journey time. As a result, the timetabled time may be
reasonably assumed as the mean time. However, such an assumption has a significant impact
on the meaningfulness of the result as there is a circular reference in the journey time reliability
computation. Therefore, the same methodology as that for driving may be employed, to at
least compare the standard deviation of journey times against the mean journey time, with no
reference to expected, timetabled time.

Figure 4.26 presents the distribution of journey time reliability metrics, per mode, across
the sample dataset. Driving illustrates the narrowest distribution, with a concentration around
0.10 to 0.15 and significantly less range than public transport and both exhibiting a slight skew
to the left. The mean for public transport is slightly higher than driving (0.15 versus 0.13 for
respectively), and the range significantly more so, illustrating significantly more risk in journey
times when compared to driving.

Fig. 4.26 Journey time reliability per mode probability density distribution
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4.1.6 Agent feedback

A key aspect of an ABM is the interactions of individual agents. In order for this to occur there
must be feedback between travellers. This is achieved by considering the impact of current
traveller traveller decisions on future travellers. For vehicular travel on the road graph this
can be modelled in terms of an increase or decrease in demand. Depending on the ratio of
the demand (traffic volume) to supply (road capacity) a travel time impact may be calculated
using context specific volume-delay functions, as was presented previously. Thus, a route
which is oversubscribed will result in an increase in journey time, potentially leading to a
modal change as a result of a change in the input to the decision making process. The context
specific volume-delay functions derived in Section 3.2 present a means for relating the impact
of vehicular volume to time delay.

No feedback is implemented for the public transport network and it is therefore assumed
there are no crowding impacts.

4.2 Computational implementation

The model architecture presented in this chapter may now be implemented in a distributed,
cluster compute system. The two broad computational challenges, the agent based computations
and the graph based computations are discussed in isolation and then brought together in the
form of a modal choice and route assignment agent based model.

4.2.1 Graph & ABM implementation

Apache Spark is an open source, general purpose compute engine for large scale data analysis
(Apache, 2016). Spark is written primarily in Scala, a general purpose functional programming
language (Odersky et al., 2008). However, in an effort to provide widespread accessibility
Spark may be used interactively with Python and R shells. The Spark cluster is managed by
Apache Hadoop YARN (Yet Another Resource Manager), which is responsible for resource
management and job scheduling/monitoring. As has been illustrated, the agent decisions may
be computed in parallel within a given time step using a MapReduce implementation in Spark.
The graph algorithm implementation is a mathematically hard problem and the most efficient
means of computation is on a single, non distributed node. This setup is graphically represented
in Figure 4.27. Essentially, this illustrates how the agent decision making is partitioned by
YARN within nodes and across multiple executor nodes, whilst the graph computation happens
in a non-distributed fashion, on the driver node. The agent feedback, in between time steps is
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also implemented using a MapReduce implementation, enabling for it to be done in parallel.
The execution of updates from this to the graph on the next step is not computed in parallel.

Fig. 4.27 System architecture

The graph computation was implemented using iGraph, a high performance graph library
for Python, written mostly in C (Csardi and Nepusz, 2006). The ABM was programmed in
low-level python with no dependencies no outside libraries for three main reasons, firstly to
avoid dependency challenges when distributing libraries across the many computational nodes
on the cluster, secondly, to avoid the computational performance overhead afforded by many
ABM libraries and lastly to allow for specification of individual agent heuristics in a more open
way. The agent tracking features, simulation logging, memory functions and plotting features
are useful for localised ABM testing but were not required as this functionality was not able to
support this large scale architecture 6. Finally, the ability to disaggregate agent decision making
heuristics across individual agent types does exist in some ABM libraries, but it often requires
this to be done so in clusters or fixed types (Zheng et al., 2012). A key goal of this framework
was to allow real-time calibration and other dynamic data driven heuristic research, so a high
degree of flexibility in specifying this was a major factor in this design decision.

6This does not mean this ABM implementation does have these features, rather that they were added separately
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4.2.2 Simulation seeding

A formal implementation takes agent seeds from a land use trip generation model, such as an
activity based model or from the generation and distribution stage from the traditional four stage
model. For the purposes of testing the implementation, a synthetic dataset of origins may be
generated by considering the population distribution at the Lower Super Output Area (LSOA)
level. Within the defined study area there are 4835 LSOA zones and as was previously shown
in Section 3.1, for data request limitations the journey time information was harvested for the
population weighted centroid of each LSOA. This methodology is illustrated in Figure 4.28.
The LSOA zone population with zone area and the computed population density probability
density plot for the entire study area are shown in Figure 4.29. With exception of some outliers,
the majority of LSOA zones illustrate population densities of 10,000 people per square km.

From these LSOA zones, the following process is employed to seed agents:

1. Local LSOA network graph (for driving and public transport) computed for bounds of
LSOA polygon

2. LSOA population is distributed randomly across graph vertices in zone

3. Shortest path for each agent to spatial centroid or PageRank centroid are computed. In the
case of the vertex not being accessible to the centroid, the agents are attributed randomly
to a different vertex. (e.g. on end of a one way road, not reachable from centroid)

4. Shortest path cost (time cost and financial cost) are exported for each agent.

This methodology is shown graphically in Figure 4.28. For each LSOA, the journey time
may be computed from a given location in the zone, to the start point (population weighted
centroid for driving, PageRank centroid for public transport) of the previously harvested journey
times. A localised graph of the LSOA zone (as shown in Figure 4.31) may be created in order
to compute these journey times, journey costs and journey distances; and then by referencing
the ONS population statistics awareness may be made to the number of potential agents a
given location may seed. The population weighted centroid was also used for the purposes
of journey time specification in Chapter 3.1. However, unlike the road network, the public
transport network is extremely time dependent, that is to say graph edges only exist at set times
and it is not possible to traverse a bus route or railway line at times outside of the timetable.
Conversely, you can always travel on a road edge when driving. In this case, the centroid
for a polygon may have a more significant impact than that for the driving graph. Thus, an
alternative method which assesses the most influential public transport vertex in a polygon and
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Fig. 4.28 Simulation zone extrapolation methodology

assigning it the centroid was investigated. The PageRank algorithm (Page et al., 1999) may be
used to measure the relative importance of vertices via their respective weighted edges. It was
proposed in 1999 and forms the basis of Google’s web search engine. Despite the intention
for use solely in the web search space, it has many graph applications and in this case may be
used to assess the relative importance of a vertex (station, bus stop) dependent on the number
of services (edges) through it. In this case, the average journey time between vertices was used
as the weighted metric for the PageRank algorithm.

The generated dataset contains a services which serve the Greater London area in any
form, and thus due to London’s strategic importance, captures regional and national services
as well as the more obvious TfL bus, rail and Underground services. Figure 4.30 illustrates
the PageRank score for stations and bus stops within the study area. The PageRank score of a
given vertex is shown by its size and the colour of the connecting edges illustrates the mode of
transport between given unique vertices. The density and complexity of the network is evident
and thus only important, high PageRank scoring, vertices are labelled for clarity. The density of
the bus network and the importance it plays at the macro scale is extremely evident. Financial
costs are computed using the respective coefficients (RAC, 2016) and (TfL, 2016a). Both of
these methods assume that the journey times to this centroid are fixed and do not change with
time as a result of timetables or congestion.
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Fig. 4.29 LSOA population versus zone area scatter plot (top) and computed LSOA population
density probability density function (bottom)
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Fig. 4.30 PageRank Visualisation of public transport stops and stations. Vertex size illustrates
PageRank score and edge colour illustrates mode

Fig. 4.31 Example localised driving graph for LSOA zone
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Fig. 4.32 Local extracted road graph for LSOA E01000010
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Fig. 4.33 Journey time to defined LSOA centroid probability density function, by mode

Collated seed

The generated dataset then presents extrapolation information for a given LSOA. In Figure 4.33
the journey time to respective centroids is shown for the entire dataset as a probably density
function. Driving is shown to exhibit the lowest journey time costs, with the majority found to
be less than a few minutes. Contrastingly, public transport exhibits longer extrapolation times.

4.2.3 Computational performance

The previous section disaggregated the two distinct parts of the computational challenges in
order to illustrate the distinct nature of each individually. Of course, the actual model itself
requires their integration. The goal of this architecture was to permit the use of fine resolution
spatial and temporal resolution within an agent based modelling framework. The original
proof of concept was carried out on HPC infrastructure at the University of Cambridge and the
performance tests were carried out on Microsoft infrastructure, through academic access to the
HDInsight programme. The setup consisted of 6 nodes, where there were two head node D12v2
with 8 cores and 4 worker nodes D13v2 with 32 cores. A series of analyses in the context of
St Pancras, London City Airport and Heathrow Airport (4835 origins and 3 destinations) hub
travel are presented in Table 4.13. A simulation consisting of the 8 million agents per time step
was seeded in order to test the scaling footprint of the implementation. The simulation was
run over 5 time slices, from 9am to 1pm and thus a total of 34 million agents were simulated.
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A generalised cost decision making heuristic was implemented and a hub decision was made
(with modal choice and route assignment). The value of the cluster implementation across 6
nodes illustrates a significant time saving, from over 2 hours on a single node to around 15
minutes on the 6 node cluster.

Table 4.13 Computational performance for 3 destinations

Hardware Time (Seconds) Agents simulated Time resolution

Single node 9383 34,694,852 9am to 1pm (1hour slices)
6 node cluster 1286 34,694,852 9am to 1pm (1hour slices)

Sensitivity analysis

The computational performance may be assessed in terms of simulations with different spa-
tial and temporal complexity. Consider an OD matrix which consists of 1000 origins to a
single destination. This matrix consists of 1000 unique origin destination pairs however, it
may be manipulated to efficiently take advantage of Dijkstra’s algorithm implementation. A
consequence of finding the shortest path between a given two vertices is that the shortest path
between all other vertices in the graph must be found. Therefore, the arrangement of a given OD
matrix into efficiently chained requests for single origin or destination sources offers significant
performance gains. This is extremely relevant in the context of multiple transportation hub
studies, such as that shown in Figure 4.34.

Consider the same total amount of agents being simulated, but with a different spatial
and temporal distribution. We may vary the number of agents per time step and reduce the
resolution of this time step to assess how the spatial and temporal dimensions interact. In Table
4.14 a series of four scenarios with different footprints are presented. Each of these scenarios
results in the same total number of agents simulated.

Table 4.14 Spatial versus temporal complexity - scenarios

Scenario Time slices Resolution Agents per slice Total agents

A 4 1 hour 8,673,713 34,694,852
B 8 30 minutes 4,336,856 34,694,852
C 12 20 minutes 2,891,237 34,694,852
D 16 15 minutes 2,168,428 34,694,852

In Figure 4.35 the proportion of ABM time actually reduces across the scaling tests, that is
to say that the efficiency of the MapReduce implementation increases. In Figure 4.36 the agent
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Fig. 4.34 Sequential versus chaining shortest path queries for a one by destination matrix
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Fig. 4.35 Performance of model, disaggregated by computional type across various levels of
spatial complexity
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Fig. 4.36 Performance of agent based model in isolation
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based modelling computation is extracted, and the scaling is shown in real terms across the
scaling tests. The efficiency of the method only improves as the agent count increases, that is to
say more agents may be computed in less time. This is as a result of the effort the MapReduce
process must go through to parallelise the smaller agent counts. This effort is significantly
larger than the value this process actually presents (in terms of time savings) and thus manifests
in a situation where more agent counts may be computed in less time. This scaling trend is
likely to continue well beyond what is reasonably useful for the modelling demand, as this
particular computation is still well below its theoretical limit, and thus, is unlikely to be a
significant computational bottleneck for the foreseeable future. Contrastingly, the amount of
time spent executing spatial, graph computations grows extremely fast and overtakes the ABM
time quickly and grows at a rate of O(V2), becoming the dominant process and the limit to
scaling.

4.3 Chapter Summary

4.3.1 Summary

1. Hypothesis

The data sources shown in Chapter 3 may be merged into a more empirically robust
representation of the transportation network and this used as an input to a scalable,
flexible agent based model.

2. Novel contributions

A proprietary graph data structure was developed to combine a range of disparate data
sources into a multi-modal representation of the transportation network. This was used
within a distributed agent based model and the MapReduce paradigm utilised to reduce
compute times whilst maintaining fine spacial and temporal resolution. A range of
different decision making heuristics are supported.

Conclusions

A scalable framework for performing agent based simulations with fine resolution spatial and
temporal data has been presented. This framework makes use of recent advances in computer
science in order to permit simulations with more data at finer time slices, over longer time
horizons. The use of such a framework is a step towards a quantitative assessment of the
hypothesis that simply including more information, in more complex ways will produce better
modelling outcomes in the transportation sector. This hypothesis is central to that of the
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’big-data’ paradigm. The ability to consider and compute real-time data within a modelling
framework may eventually permit real-time calibration and the merging of operational with
strategic models. Using the described process, a series of steps are employed to create a
directed, weighted, embedded, explicit and labelled graph for London. This graph is then used
within a modal choice and route assignment agent based model.

4.3.2 Limitations

1. Extremely poor understanding of demand - This framework makes use of the datasets
presented in Chapter 3. In the context of the road network, volumes on a given road
are computed based upon volume-delay relationships. That is to say we may accurately
see the impact of true origins and destinations, but do not know them. We therefore
have the journey times as a result of congestion, but do not understand nor know the
journey’s which resulted in them. Methods do exist for extracting origin destination but
struggle with validation (Willumsen, 1978). As a result, although the proposed technical
architecture permits for long time horizon, fine resolution simulations, there is limited
modelling value in doing so. In Chapter 6 this is discussed further.

2. Discrete versus continuous time and assumptions around equilibrium - The proposed
methodology employs discrete time steps and utilises empirically robust volume-delay
curves in order to handle transitions across time steps. The empirical nature of these
curves likely enables for statistically strong simulations the closer a given simulation
is to the measured situations but it is unknown how this compares to a continuous time
simulation such as that done by MATSim. It is challenging to compare these methods
due to the differences in agent logic used and the use of stochastic methods in MATSim
(Zheng et al., 2012). This challenge also relates to the assumptions surrounding network
equilibrium. Generally the Frank-Wolfe algorithm or Wardrop equilibrium are used as
relevant implementations of the Nash equilibrium as they attempt to satisfy network
constraints. Of course, agent based models do not naturally reach equilibrium and the use
of such a methodology on simulation outputs may be used to constrain simulations where
convergence to some defined criteria does not occur. The ultimate measure of success for
appraising these implementations is their relative performance to validation criteria. In
the context of an ABM, this becomes challenging as traditional transportation validation
criteria are generally macro agent outputs, such as edge (link) level counts or journey
times. Validating an ABM against such criteria may not necessarily being meaningful in
its own right. Such research further highlights the challenges faced in validating micro
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interaction models with well understood macro validation criteria. In Chapter 6 this is
discussed further.

3. Network accuracy - Lane counts and junction complexity has not been included in a
sophisticated way. Lane and turn restrictions are not respected, despite the inclusion of
directionality. These limitation also cause issues when attempting to find an appropriate
volume-delay curve for a given section. Further to this, an unknown sample bias is
exhibited towards those roads for which the volume-delay functions were generated. Free
flow capacities, lane counts and volume-delay functions are assumed by closest match
from Chapter 3 study.

4. Public transport crowding - The data sources utilised to quantify the public transport
network in Chapter 3, the GTFS and real-time feeds, do not include information on
capacity. The quantification of this capacity is highly complex due to the range of bus
types and rolling stock available. Secondly, the relationship to demand is complex and
highly context specific (e.g (Tirachini et al., 2013)). Feedback on the public transport
network is not implemented in this framework and is a significant limitation as it is
therefore assumed that there are no crowding impacts.

5. Hadoop, Spark and the cost of scaling - The use of Hadoop & Spark forces some
implementation constrains. Library’s and complex dependences (such as pandas, scipy,
numpy) must be installed locally per node, and cannot be bundled and shared across nodes
via traditional sharing methods. This is because they utilise C level code, which must
also be compiled specifically for the hardware OS. Local nodes need local dependencies
and so code changes must be managed across the cluster and not just the master node.
Maintaining and running distributed systems is a non-trivial exercise, despite recent
advances.

6. Cycling & Walking inclusion - Cycling and walking (beyond connecting public transport),
were not included, however the road graph also supports modes beyond that of personal
car and taxi. The same infrastructure supports walking and cycling modes, with type
restrictions.

7. Pricing - The representation of the zone system for TfL services assumed anytime, adult
and pay as you go with no capping and did not consider any other type of ticket. Parking
prices were similarly abstracted and a single value considered.

8. Graph database stability - The framework presented here does not contain a formal graph
database backend. As a result, effort was made to enforce unique index and key value



4.3 Chapter Summary 181

pair attributions to ensure graph stability. The inclusion of a formal graph database would
act to stabilise the storage of either the inputs (real-time/empirical data) or simulation
geospatial data.

9. Decision making heuristics - The graph compute makes some decisions on what the
behavioural trip consists off. The use of business value of time coefficients to utilise the
disaggregation of mode and distance gave benefits in specificity, but is challenging for
the actual simulation of HSR here where tourism is likely significant. Further complexity
could be added by considering a taxi pricing structure which considers supply and
demand, such as Uber or Lyft. The increased demand during rain may lead to a pricing
tipping point that may even then result in a public transport route with a heavily weighted
walking section.





Chapter 5

HS1 Case Study

In Chapter 2 the literature illustrated the need to move away from tail-pipe only comparisons
to more holistic life cycle impact assessments. In this Chapter the capital carbon costs of
infrastructure construction and hub level travel are considered in order to better understand
HS1 travel from London to Paris and London Brussels travel.

In the first section, the capital CO2 impacts for HS1, the Channel Tunnel, LGV Nord
and HSL 1 are considered in an effort to avoid a tail-pipe only bias. Secondly, an internal
Eurostar report from 2006 on the comparison between Eurostar and aviation for London Paris
and London Brussels is assessed to understand the historic operational CO2 performance.
Thirdly, this operational aspect of HS1 is considered in the context of surface access - via the
collation of the distinct analyses presented in Chapter 3. These data sources are then used to
aid the understanding of how the relevant transportation hubs change with time as a result of
congestion, timetabling and other impacts.

5.1 Historic performance

5.1.1 Capital CO2 emissions

Journeys from London to Paris and Brussels are the focus of this study and thus the spatial
boundary consists of three constituent parts:

1. HS1

2. The Channel Tunnel

3. LGV Nord & HSL 1
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HS1

The Channel Tunnel Rail Link (CTRL), now referred to as High Speed 1 (HS1) is a 109km
high speed rail line from London to the entrance of the Channel Tunnel at Folkestone. Eurostar
operate services chiefly to Brussels and Paris, Southeastern operate domestic services and DB
Schenker operate some freight services.

The construction of HS1, involved a significant CO2 investment through geotechnical
structures, track, stations and the rolling stock itself. As was illustrated by the (UIC, 2011)
report capital CO2 emissions may be in certain conditions highly important. For example, the
Taipei-Kaohsiung line in Taiwan has 10g CO2 per pkm for rolling stock and construction alone,
which is directly comparable to the total (operation inclusive) 10.3g CO2 per pkm for the South
Europe Atlantic line in France (UIC, 2011).

An undergraduate project was carried out in the University of Cambridge to quantify the
capital CO2 cost of the HS1 line. This was carried out with support from Arup who provided
the as-built specification. This study built upon some small scale case studies by Chau et al in
2012. This study (Chau et al., 2012b) considered section 310 and 220 of the line and found that
there were two types of structure, those where the embodied materials equate to 90% of the total
and those where the installation and transportation can account for up to 40% of the total. This
study and others (Hughes et al., 2011b) highlighted the care that must be taken for considering
geotechnical structures where the manipulation and movement of ground material can shift the
dominance away from embodied focussed studies and thus distort actual emissions. A freedom
of information (FOI) request was made to HS2 limited for the methodology employed as part of
their environmental impact study (HS2, 2012) and this was then used to guide the assessment
of HS1.

The bounds for this study are shown in Figure 5.1. This study found that the total capital
CO2 footprint equated to 2.05MtCO2. The proportional disaggregation of this by structure type
and classification is shown in Figure 5.2.

The Channel Tunnel

The Channel Tunnel is a 50.45km rail tunnel connecting Folkestone in the UK to Coquelles in
France. There are three tunnels; two rail tunnels (7.6m diameter) and a single service tunnel
(4.8m diameter), as illustrated in Figure 5.3.

No formal emissions or embodied energy assessment has been carried out on the Channel
Tunnel and limited construction data is available in the public domain. Open track studies are
not comparable due to the energy intensity of tunnel construction. The (Chau et al., 2012b)
study calculated the embodied energy costs of contract 310 and contract 220 of CTRL, where
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Fig. 5.1 Study bounds for capital CO2 assessment of HS1 (Lin, 2015)

Fig. 5.2 HS1 CO2 footprint disaggregation by structure type (left) and classification (right)
(Lin, 2015)
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Fig. 5.3 The Channel Tunnel cross section (GETLINK, 2009)

220 was a tunnel segment through London Clay and is the closest data point to the Channel
Tunnel available in the literature. The tunnel was constructed in the early 1990’s, when energy
intensity and emission factor statistics were in their infancy and were widely unknown. Despite
these challenges, the contract 220 study may be used to estimate the emissions footprint to an
order of approximate magnitude. Contract 220 was found to cost 949TJ, or 126GJ per metre
inclusive of material, transportation, manufacturing and installation (e.g. TBM operational
costs). The joule to kWh conversion was assumed as 0.2778MJ per kWh (Trust, 2008) and the
UK CO2 intensity assumed at 1990 rate of 700gCO2/kWh. The assumed capital CO2 cost for
the Tunnel is therefore approximately 1.24 MtCO2.

LGV Nord & HSL 1

Beyond the Channel Tunnel, Eurostar services connect to the French LGV network and diverge
near Lille depending on their final destination. At Fretin, near Lille, services may continue
directly to Paris using a bypass, or connect to the Lille-Brussels line. LGV Nord connects Paris
to Coquelles and the Channel Tunnel with a continuous section of 333km of predominantly open
track. The Lille-Brussels line is 71km from the Fretin junction Brussels Zuid Station, again
predominantly open track. In 2011, the French national railway company (SNCF) published a
carbon footprint study on their newest High Speed rail line, the LGV Rhin-Rhône line. The
LGV Rhin-Rhône line is a 140km of mostly open track and is comparable to the majority of the
French network and may be used to estimate the capital CO2 emissions. The SNCF study found
that total emissions equated to 7,350 tCO2 per km track, considering materials, transportation
and civil engineering works (SNCF, 2011). These coefficients may then be used to estimate
those associated witht the LGV Nord and HSL 1 sections, as shown in Table 5.1.
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Table 5.1 Estimated capital CO2 emissions per section

Section Length Capital CO2 cost

LGV Nord 333km 2.447 MtCO2
HSL 1 71km 0.521 MtCO2

Total 404km 2.97 MtCO2

Total

Each of these sections also operate non Eurostar passenger services and to a lesser extent, freight
services. There is therefore a requirement to apportion some of these CO2 costs elsewhere,
beyond the scope of this study. There has been a significant amount of change in the service
mix across the HS1 line, with Eurostar, Southeastern and more recently DB Schenker sharing
the use of the HS1 infrastructure. Southeastern operate on average 8 trains per hour to a mix
of Ebbsfleet and Ashford destinations (Southeastern, 2016) and in 2016 Eurostar operated on
average 5 trains per hour (Eurostar, 2016a). Since 2013, DB Schenker have operated a twice
weekly service to Poland (Journal, 2014). It is therefore assumed that the HS1 capital CO2

cost for which Eurostar may be apportioned is approximately 38% (not including DB Schenker
services since it a recent and infrequent addition).

The section of open track from the Channel Tunnel exit to Paris and Brussels contrast with
CTRL in that they are more heavily used by non-Eurostar services, such as French SNCF
TGV services and Belgian Thalys services. In 2016, Eurostar was approximately 10% of the
services.

The Channel Tunnel operates a significant vehicle shuttle service as well as through-rail
passenger services. In 2016, Eurostar was approximately 20% of the services (EuroTunnel,
2016). The estimated total capital CO2 emissions for the study area are therefore shown in
Table 5.2.

Table 5.2 Estimated capital CO2 emissions per section and total apportioned amount

Section Capital CO2 cost Percentage allocation to study services

HS1 2.05 MtCO2 38%
The Channel Tunnel 1.24 MtCO2 20%
LGV Nord & LGV1 2.97 MtCO2 10%

Total 1.495 MtCO2

To put this amount into context, it is significant, at around 0.4% of the total annual UK CO2

emissions for the year of 2016 (based on (DfBEIS, 0016)).
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5.1.2 Operational CO2 emissions

High Speed Rail
In 2006 Eurostar commissioned a report on the CO2 comparisons between Eurostar services

and that of short haul-aviation (Watkiss, 2009). In 2009 this report was updated with cab
measured energy usage from the rolling stock in place of manufacturer performance factors.
This section contains a summary of this unpublished report.

Fig. 5.4 Kg CO2 per train (single trip) comparative for Paris and Brussels, with 2006 coefficients
and updated measured 2009 statistics (Watkiss, 2009)

The kg of CO2 per passenger single trip is dependent on load factors and the actual
generation of the mix used to power the rolling stock. The statistics on energy mix CO2

coefficients are generally made available at a national level and since these services involve
time in at least two countries, methodological differences in how each country reports has a
significant impact. The UK advocates for country wide, average coefficients whereas conversely,
France advocates for local supplier coefficients as and when these are available. The difference
between these two methodologies is apparent in Figure’s 5.5 and 5.6. These Figures illustrate
the trend in per passenger CO2 emissions for each route, from 2007 to 2009. The step change
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evident in both methodologies is as a result of a switch to French (nuclear dominated) energy
for the Eurotunnel in 2008. The Brussels routes performs generally worse than the Paris route
as a result of the relatively higher CO2 intensity of the Belgian energy supply compared to the
French.

Fig. 5.5 kg CO2 per passenger single trip, by average energy mix coefficients (derived from
(Watkiss, 2009)

Aviation
The Eurostar report used the International Civil Aviation Organization (ICAO) emission

calculator (ICAO, 2017) with purchased (non publicly available) specific Civil Aviation Au-
thority (CAA) load factors in order to reflect actual demand for the actual individual routes.
The calculated emissions, per passenger are shown in Table 5.3. ICAO are the nominated lead
for reporting aviation climate change statistics to the United Nations Framework Convention
on Climate Change (UNFCCC, 2018) and the body used by the UK’s Committee on Climate
Change (CCC, 2018), the authority who advise on the UK’s carbon budget. The low load
factors for London City flights are generally responsible for the considerably higher emissions
of 219.8 CO2 per passenger trip.
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Fig. 5.6 kg CO2 per passenger single trip, by supplier energy mix coefficients (derived from
(Watkiss, 2009)
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Table 5.3 Aviation kg CO2 per passenger trip emissions by route (from (Watkiss, 2009))

Route kg CO2 per passenger trip

London City to Paris CDG 219.8
London City to Paris Orly 124.7

London Heathrow to Paris CDG 53.9
London Luton to Paris CDG 51.4

London City to Brussels 69.9
London Gatwick to Brussels 101.1

London Heathrow to Brussels 70.3

Hub travel - surface access

Surface access was not considered within the Watkiss report. In Chapter 3, methods for
quantifying real-time transport conditions were proposed. These methods may be applied
specifically to the travel hubs of London City Airport, London Heathrow Airport and St Pancras
International Train station in order to assess their differing characteristics in the context of
London Paris and London Brussels journeys. Of course, these datasets illustrate the influence
of actual demand (through how it influences congestion) but don’t explicitly quantify quantify
demand in a formal origin and destination format. The true origins for passengers on London
Paris and London Brussels services is not available in public datasets, and Eurostar’s own
understanding of this is understandably highly commercially sensitive. As a result a similar
methodology to that from Chapter 4 is used, and LSOA zones are used to at least paint a
picture of the population weighted areas of Greater London. These hubs may be compared in
terms of journey times, per mode and how we may assess how these comparisons change over
time. Table 5.4 illustrates the mean journey time, speed and distance for the different hubs by
driving and table 5.5 presents the same information by public transport. In terms of surface
access differences by mode, Heathrow illustrates the largest contrasts. Mean journey distance
is significant at over 50km by driving compared to 37km via public transport, illustrating the
tendency for road infrastructure to increase vehicle kilometre travelled (VKT) metrics (Banister,
2003). This increased mean journey distance for driving is somewhat negated by the mean
journey speed of 15.92 m/s but still results in the largest mean journey time of the three hubs
by driving. Generally, public transport illustrates more consistent mean journey speeds, with
Heathrow exhibiting the fastest speeds as a result of express services which service it from
central locations (e.g. Heathrow Express).

Such macro level statistics shown above provide useful context but are limited in their
ability to explain the many dimensions of each hubs surface access footprint. The distribution
of metrics around the mean measurements presented above illustrates a more reflective picture.
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Table 5.4 Driving mean journey times, speeds and distances per hub

Hub mean journey time mean journey speed mean journey distance

Heathrow Airport 3186 seconds 15.92 m/s 51.04 km
St Pancras International 2662 seconds 5.91 m/s 16.23 km

London City Airport 2793 seconds 9.25 m/s 25.83 km

Table 5.5 Public transport mean journey times, speeds and distances per hub

Hub mean journey time mean journey speed mean journey distance

Heathrow Airport 5386 seconds 7.07 m/s 37.24 km
St Pancras International 2670 seconds 5.94 m/s 16.16 km

London City Airport 3785 seconds 5.87 m/s 22.34 km

Figure 5.7 shows the probability density function for both journey distance (top) and journey
time (bottom) for each hub and for each mode. London City and St Pancras illustrate journey
distance distributions with similar footprints for both public transport and driving. Contrastingly,
Heathrow illustrates a bimodal distribution for driving, with a significant increase in journey
distance by driving, where none exists by public transport. This is consistent with a large body
of evidence which shows road infrastructure tends to increase distance travelled in an attempt to
distribute demand (Banister, 2003). In terms of journey time there is an interesting distinction
between London City and St Pancras. Despite similar distance footprints by mode, there is
a distinct difference in terms of the journey time competitiveness per mode, with St Pancras
exhibiting better public transport performance compared to London City. St Pancras’ centrality
and access to multiple Underground lines, dozens of bus services plus rail services as was
shown in Chapter 3 potentially being explanatory factors.

This data may be used to better model the emissions footprint associated with travel to the
travel hub, and. In the next section this data may be combined with the capital emissions and
estimations and enable a more holistic analysis.

5.1.3 Holistic analysis - combining capital and operational costs

The Watkiss (Watkiss, 2009) report outputted the comparison between HSR and aviation per
passenger trip shown in Table 5.6 and are generally consistent with those published by the
UIC (UIC, 2011). The Eurostar journeys feature different emissions depending on the energy
mix methodology used. The air coefficients consider average load factors from the CAA and
consists of the average emissions from the serving airports (Heathrow and Luton in the case of
Paris and Heathrow and Gatwick in the case of Brussels.). In the case of London Paris, HSR is
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Fig. 5.7 Probability density plot of distance (top) and duration (bottom) of surface access to
travel hub
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7.5 times fewer emissions (average mix methodology) and 11.4 times fewer emissions (supplier
mix methodology) than that for the equivalent journey by aviation. Similarly, in the case of
London Brussels, HSR is 8.1 times fewer emissions (average mix methodology) and 13.2 times
fewer emissions (supplier mix methodology than the equivalent journey by aviation).

Table 5.6 Watkiss summary of per passenger trip emissions between Eurostar and aviation in
2007

Route Emissions (average mix) Emissions (supplier mix)

Eurostar London to Paris 7.0kg CO2 per passenger trip 4.6kg CO2 per passenger trip
Air London to Paris 52.65 kg CO2 per passenger trip NA

Eurostar London to Brussels 10.6kg CO2 per passenger trip 6.5kg CO2 per passenger trip
Air London to Brussels 85.7kg CO2 per passenger trip NA

However, the Watkiss report did not consider surface access nor the capital CO2 emissions
of the infrastructure. In Section 5.1.1 the total capital cost attributable to Eurostar was estimated
to be 1.495 MtCO2. In order to assess the CO2 pay back period of this capital CO2 cost, a
simplistic calculation to assess the possible emissions attributable to aviation if the HS1 link
and Channel Tunnel did not exist may be carried out. From 2003 (when Section 1 of HS1
opened) to 2014 Eurostar carried a total of 84.6 million passengers (GMTR, 2014). If these
emissions were distributed across all trips to 2014, it would equate to around 17.67kg CO2 per
passenger. The capital construction emissions per passenger trip would therefore be equivalent
to 2.52 times and 1.6 times that of the operational emissions for London Paris and London
Brussels respectively. Of the total 84.6million trips on Eurostar to 2007, 10 million are assumed
to be induced, generated demand and the remaining 74.6million trips are distributed as 46.25
million trips to Paris and 28.35million trips to Brussels based upon historic service counts and
load factors (GMTR, 2014). The result is an estimated cost of 2.44MtCO2 for the London Paris
route and 2.43MtCO2 for the London Brussels route using the found Watkiss coefficients for
aviation (in Table 5.6). Interestingly, the routes have a similar overall footprint despite the larger
demand on the London Paris route which is counteracted by the larger per trip footprint for
London Brussels. For the same assumptions, the Eurostar cost may be found to be 0.32MtCO2

(average mix) or 0.21MtCO2 (supplier mix) for London Paris and 0.30MtCO2 (average mix) or
0.18MtCO2 (supplier mix) for London Brussels, as shown in Table 5.7. Therefore the cost of
the capital investment in CO2 was paid off in 5.2 years using average energy mix methodology
or 4.6 years using the supplier energy mix methodology, as shown in Table 5.8.

In Figure 5.8 the surface access emissions from the previously discussed surface access
dataset is presented. The emissions footprint associated with public transport journeys is shown
to be significantly less than that for driving, irrespective of hub used. The previously discussed
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Table 5.7 Total emissions for London-Paris and London-Brussels trips (2003-2014)

Route Type Estimated total emissions (2003-2014)

London - Paris Aviation 2.44MtCO2
London - Brussels Aviation 2.43MtCO2

London - Paris HSR 0.32MtCO2 (average) or 0.21MtCO2 (supplier)
London - Brussels HSR 0.3MtCO2 (average) or 0.18MtCO2 (supplier)

Table 5.8 Capital CO2 emission payback period estimations

Emissions payback period HSR energy supply methodology

4.6 years Supplier mix
5.2 years Average mix

bimodal footprint for driving to Heathrow is again shown, with peaks at 5kg CO2 and 15kg
CO2 evident. The driving footprint for Heathrow and London City likely further increases the
relative performance of HSR for end to end journeys when considering surface access. This
would therefore suggest that payback period for HS1 is likely even shorter than the 4.6 years
(supplier mix methodology) and 5.2 years (average mix methodology) discussed previously.

At this stage, it is now possible to attempt to compare the capital emissions, hub journey
emissions with the actual London Paris and London Brussels journey in order to illustrate their
relative importance. Building upon the passenger counts from 2003 to 2014, Eurostar carried an
additional 51.2 million passengers to 2017 (GMTR, 2014), (Eurostar, 2015), (Eurostar, 2016b),
(Eurostar, 2017),(RailwayGazette, 2018) resulting in a total of 135.8 million passengers since
2003. We may now normalise the capital emissions per passenger to this date, resulting in
around 11kg CO2 per passenger trip. How the capital emissions may be attributed to passengers
is shown in Figure 5.9.

This can be combined with the Watkiss operational emissions and the estimated hub surface
access emissions, per hub and for both driving and public transport surface access to the hub,
as is shown in Figure 5.10. The influence that the surfaces access method of transport to the
hub has on overall emissions is shown to be significant, with flying to Brussels or Paris from
Heathrow the most affected. Despite the increase in emissions as a result of the construction of
HS1, and irrespective of the mode of transport used to access the hub, high speed rail is shown
to exhibit significantly less emissions per trip.
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Fig. 5.8 Surface access emissions probability density function, by hub and by mode

Fig. 5.9 Capital CO2 emissions per passenger 2003 - 2017
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Fig. 5.10 Probability density plot for total estimated emissions for London Paris (top) and
London Brussels travel (bottom), dissagregated by surface asses mode
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5.1.4 The behavioural drivers

As was discussed in Chapter 4 there are a range of different heuristic methods which attempt to
compute the above metrics into a form from which a human decision may be modelled. The
journey times may be disaggregated by type (in vehicle travel, weighting etc), merged with the
formal financial costs (e.g. fare) and a generalised cost found using the same methodology from
Section 4.1.5. The probably density function for the computed generalised cost is presented for
each hub and by mode in Figure 5.11.

Fig. 5.11 Probability density plot of generalised cost of surface access to travel hub

The surface access generalised costs computed up until this point do not include the ticket
of a flight or HSR ticket for the entire end to end journey. Flight tickets and more recently HSR
tickets have been using dynamic pricing structures which consider a range of factors to provide
extremely temporally dynamic prices. Pricing changes dependent on how far in advance a
booking is made, the time of travel (weekend versus weekday), the class of travel and other
factors such as weather and the presence of cultural/sporting events. The algorithms which
generate these prices are extremely commercially sensitive and not publicly available, nor is the
harvesting of pricing information from seller websites permitted under the terms and conditions
of access. Information on how far in advance travellers generally purchase tickets is also not
publicly available. It is therefore very challenging to estimate the likely pricing distribution for



5.1 Historic performance 199

aviation and HSR. A manual study was carried out over a period of one month in 2016, where
British Airways, Air France and Eurostar ticket prices were assessed. Over this period, the
minimum and maximum prices for travel were harvested and for extrapolation to an individual
journey, prices were assigned randomly between these two points. Eurostar is shown to exhibit
the largest range in prices and London City generally exhibiting the most expensive prices. The
summary of these assumptions are shown in Table 5.9.

Table 5.9 London - Paris travel assumptions

Mode Hub Journey time Wait time Price range

Aviation Heathrow Airport 55min 120min £37 - £150
Aviation London City Airport 55min 90min £60 - £200

High Speed Rail St Pancras 135min 45min £44 - £191

Since the distribution of ticket prices between the minimum and maximum range identified
is unknown, it is not possible to assess the overall distribution of generalised costs. However, it
is possible to assess the extreme points in the range and the proportional cost of the waiting
time and in vehicle time for each destination and mode. This is shown in Figure 5.12 where
the generalised cost weighted journey time footprint differences between aviation and HSR
are evident in their proportional importance. Heathrow recommends arrival two hours before a
flight and the waiting proportion of the generalised cost is shown to be extremely significant.
Contrastingly, HSR via St Pancras shows the highest proportion of in vehicle costs, but these
are still less than aviation from both Heathrow and London City in both pricing scenarios.
The shorter pre-departure arrival time from London City result in it dipping below Heathrow,
despite the generally higher up front ticket costs. Of course, the assumed value of time metrics
here and limited knowledge of ticket pricing heavily caveat the results, but illustrate the relative
trade off’s shown in terms of generalised cost.

Aviation generally offers a reduced amount of time actually in vehicle time, but significantly
more time is required waiting (e.g. due to security), plus airports are generally further from
central economic districts than train stations. Those airports closer to central locations often
have capacity constraints and thus are usually more expensive, as seen with London City above.
Conversely, HSR is longer in transit, but the value of time is lower as it is more productive and
the amount of wait time required is significantly less. In order to consider these factors, these
hub generalised costs may be added to the large surface access dataset and the journey to a hub
considered with the journey from the hub to Paris. This total generalised cost per hub is shown
in Figure 5.13 where HSR and St Pancras are shown to exhibit the most competitive generalised
cost functions. For all modes and hubs, public transport is shown to illustrate generally more
expensive generalised costs compared to those by driving.
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Fig. 5.12 Generalised cost of hub - Paris travel and constituent parts per hub, for maxium and
minimum ticket price scenarios
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Fig. 5.13 Probability density plot of London - Paris total generalised cost

The above trends indicate the kind of variations that occur per mode and hub, but these
macro statistics negate the importance of a specific point in time for a given traveller. It is
the relative competitiveness of each mode, against other modes, for a given person, in a given
location and given point in time that is the dominant criteria for decision making. In order to
consider this, the different options may be considered individually over discrete time periods.
This is shown in Figure 5.14 where the proportion of trips which are lowest generalised cost is
shown by both time of day and day of week to illustrate the temporally dynamic nature of the
changing conditions. St Pancras and HSR is evidently the most dominant option at all times of
the day, with the exception of 3pm, where significant Eurostar service timetabling differences
to aviation and to a less extent traffic conditions reduce journey times to Heathrow sufficiently
to challenge its dominance.

5.2 Chapter Summary

5.2.1 Summary

1. Hypothesis
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Fig. 5.14 Lowest generalised cost hub and mode, by day of week (top) and hour of day (bottom)
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The inclusion of the capital CO2 emissions and surface access emissions in HSR versus
Aviation LCA analyses may have a significant impact on the outputs.

2. Novel contributions

The capital CO2 cost is shown to have a non-trivial impact on the emissions footprint,
equating to an estimated 1.495 MtCO2 for HSR. Despite this large cost, the savings in
HSR operational emissions compared to that of aviation mean this capital cost was esti-
mated to have been paid off in 4 to 5 years depending on HSR energy mix methodology.

By using spatially and temporally dynamic crowd sourced data a richer and more nuanced
understanding of the nature of different major, international transportation hubs was
revealed. It is reassuring to see that the new data and new methods produce macro results
which are in line with that generally expected. Such insights provided by the detail
of these methods show promise and may enable for more targeted interventions in the
context of modal shift ambitions to reduce CO2 emissions, without requiring a reduction
on demand.

5.2.2 Conclusions

The inclusion of the emissions associated with the construction of HS1 infrastructure make
a distinct difference to the per trip operational emissions. Despite this, the relative poor
performance of aviation for similar routes results in a very short payback period. The modelling
of hub travel further compounds this, where the HSR hub of St Pancras is shown to have
significantly less associated emissions for similar trips, likely further reducing the pay back
period of the infrastructure.

The generalised cost computations begin to aid our understanding of the influence of hub
travel to the larger trip. The impact of temporally dynamic connectivity illustrates just how
much variability there can be for different hubs, irrespective of the actual Heathrow, St Pancras
or London City to Paris/Brussels trip itself. The influence of frequent flier miles, extremely
opaque pricing models and a lack of known data on true origins means that only a part of the
system is understood here.

5.2.3 Limitations

1. The true demand for London Paris and London Brussels trips was not well understood
and thus assumptions were made in projecting the likely origin to hub emissions.
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2. Station operational emissions and life cycle costs of the electricity supply infrastructure
were not included. Average load factors were taken an extrapolated across all services for
both HSR and aviation, impacting on the fidelity of the operational emissions estimations.

3. The surface access emissions were estimated using standard distance based emission
coefficients which are poor at reflecting traffic and load factor emissions. The biggest
challenge in estimating surface access emissions is the underlying passenger demand,
the population centred LSOA zones were used to illustrate the range of possible values.

4. A significant period of time has passed since the Eurostar studies were carried out (2006
and 2009) and there have been changes to HSR services, aviation services, HSR rolling
stock and airplanes.



Chapter 6

Conclusions

6.1 Summary

In Chapter 2 the literature highlighted the need for a more holistic and context specific set
of analyses when considering the sustainability of different modes of transport. In Chapter 3
different data sources were utilised to compute temporally and spatially dynamic statistics on
the performance of different transportation networks. These data sources permitted insights into
actual, real-world conditions and painted a contrasting picture to the idealised and standardised
metrics usually used as model inputs in transport modelling. Figure 6.1 shows one such
illustration where journey times along a given road are shown to vary by day of week and
time of day. The challenges with standard AM, PM and IP (inter-peak) methodology for
capturing temporal changes is clearly evident in light of such variability. In Chapter 4 these
data sources were combined in an agent based modelling framework for modal choice and
route assignment. In the context of utility theory decision making heuristics, the framework
illustrated how generalised cost may fluctuate as a result of changing conditions and different
heuristics, as shown in Figure 6.2. The use of new computer science paradigms (predominately
that of MapReduce) enabled for large numbers of agents to be simulated, as shown in Table
6.1. The computational footprint of this implementation is shown in Figure 6.3 and illustrates
the value of the MapReduce paradigm for the ABM computation. However, this figure also
illustrates the challenges faced when the spatial complexity of the simulation increases and the
graph computation costs become dominant.

In Chapter 2 the High Speed 1 (HS1) line was specifically analysed in order to better
understand the emissions associated with its use. Capital CO2 emissions were shown to be
significant, as was the method of access to the respective hub. Overall, it was shown that
the capital CO2 emissions accrued as part of the infrastructure’s construction were paid of in
around 5 years when compared to the likely emissions footprint via aviation. In Figure 6.4
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Fig. 6.1 The variability of journey times

Fig. 6.2 Journey variability in the context of generalised cost - heuristics and the human
interface
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Fig. 6.3 The computational value footprint of the proposed implementation
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Table 6.1 Computational performance of ABM

Hardware Time (Seconds) Agents simulated Time resolution

Single node 9383 34,694,852 9am to 1pm (1hour slices)
6 node cluster 1286 34,694,852 9am to 1pm (1hour slices)

the footprint for access to the respective hub (via public transport or driving) is combined
with the Watkiss operational emissions (Watkiss, 2009) and the estimated capital emissions to
illustrate the contrasting options for London Paris and London Brussels travel. The influence
that the surfaces access method of transport to the hub has on overall emissions is shown to
be significant, with flying to Brussels or Paris from Heathrow the most affected. Despite the
increase in emissions as a result of the construction of HS1, and irrespective of the mode of
transport used to access the hub, high speed rail is shown to exhibit significantly less emissions
per trip.

6.2 Specific conclusions

The underlying hypothesis that this research aims to provide data, methods and tools to support
is that finer resolution temporal and spatial inputs to a more complex, dynamic model will result
in more accurate predictions. Chapter 3 presented a series of techniques which enabled for the
supply side for the transportation network to be better understood. This was done to a degree
of success, and illustration made to how the new network representation impacts on modelling
outcomes for traveller decision making. Further work is required to fully understand some of the
fluctuations exhibited in some aspects of the data harvested. However, although these methods
include the influence of demand, they do not enable for its quantification. The challenge of
understanding full origins and destinations remains significant. Travel surveys maintain their
inability to scale sufficiently and struggle with sample bias (TSC, 2016). Data from mobile
phone companies which uses cell towers triangulation presents sufficient sample size but with
poor accuracy (Spirito, 2001) leading to issues with true origin/destination detection and route
and modal choice detection. Conversely, major technology companies with enormous sample
sizes (Google and Apple) hold large location device data repositories but use them in limited,
mostly commercially driven exercises. The raw demand side data of this picture poses profound
privacy and ethical challenges and in light of recent regulatory changes in the EU paints a
constrained picture for its usage. Supply side data is generally freely available and comes with
relaxed regulation due to the lack of personal data.
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Fig. 6.4 Probability density plot for total estimated emissions for London Paris (top) and
London Brussels travel (bottom), disaggregated by surface asses mode
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This research makes contributions in terms of quantifying the supply side of the public
transport and road networks, and in Chapter 4 provides tools and a scalable methodology for
utilising this data in a dynamic agent based model.

6.3 General conclusions

The data sources used here may be polled at even finer resolution, potentially magnifying the
present computational demand by a significant amount. It is reassuring that at a macro scale
these data sources exhibit behaviour which is generally expected, giving confidence in the
veracity of the methods. Of course, the challenge of how much fine resolution is *needed* to
answer urban questions remains unknown. The relationship between computational complexity
and model accuracy is most certainly not linear and there will a point at which increases
in model complexity may have little or no value in terms of improving the accuracy of the
model output, as is graphically conceptualised in Figure 6.4. In the crudest sense, the strong
relationship between model complexity and model run time results in a simple heuristic whereby
a model which runs in half the time of another model, yet only has a less than 5% difference in
accuracy may be deemed acceptable. The key contribution of this thesis is a modelling platform
for which such models may now be implemented and the true relationships hypothesised in
Figure 6.4 may be derived for a range of different contexts. It is hypothesised that the value/cost
transition curve consists of three distinct parts - 1. the data 2. the model and 3. the heuristics.
The use of the proposed data harvesting in Chapter 3 at AM, PM, IP temporal resolution and
MSOA level spatial resolution would likely equate to the section labelled A. This illustrates
the maximum value improved data can give a static, deterministic (e.g. 4 stage) model before
the fidelity for the data becomes beyond the scope of which the model can use. At this point,
there is a need to move to a new modelling paradigm (as shown by label B) which permits
for such data to be used in a meaningful way. The lower portions of this curve likely involve
the use of the proposed ABM on top of a relative static trip generation and trip distribution
model. However, quickly the resolution and complexity of such a hybrid model begins to lose
value as it sits upon a cruder input and the transition must then be made to a more activity
based representation of demand, where trips are chained meaningfully. The final and most
complex transition occurs at C where the transition from theory driven heuristics surrounding
human decision making and logic may begin to be applied in a more data driven way. For
example, using a range of heuristics from literature which enable for different types of journeys
and roles (by the same agent, and by different agents) to be propagated throughout an activity
based model. If, at this point computations can be sufficiently quick and revealed agent choices
calibrated against previously modelled behaviour with a degree of feedback currently not
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possible, the use of an agnostic modelling framework may permit for real-time calibration in a
data-driven way (Casey et al., 2017).

As such, a key conclusion of this research is the need for a multi-faceted, incremental
approach to model development, which appropriately pairs a modelling paradigm to an appro-
priate resolution data source(s) with heuristics which can meaningfully relate agents to each
other. This transition, with labelled examples is illustrated below:

Fig. 6.5 Proposed relationship between value, cost and complexity

1. Data: Survey data -> Aggregated geospatial data (e.g. telco data) -> individual geospatial
data (e.g GPS traces)

2. Models : Deterministic and static models -> Stochastic and dynamic models

3. Heuristics : Theory driven (e.g Discrete choice) -> Data driven (e.g real time calibration)
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6.4 Future work

6.4.1 Real-time calibration & decision making heuristics

The proposed framework attempts to permit the use of a range of different decision making
heuristics, rather than prescribing one. In Chapter 2 the challenges associated with the many
variants of rational, perfect information informed decision making was highlighted. Presently,
the calibration and validation exercises are discrete occurrences - a linear process of data
gathering, model creation, calibration and finally validation occurs. From this point, the model
projections do not change until the next iteration may be years or even decades away. There is
little in the way of actual feedback, where modelled behaviour is related to actual exhibited
behaviour in a meaningful way. The value of such a methodology is theoretically profound in
terms of the ability to aid our understanding of route choice and modal choice, but has limited
value in the short term for answering longer term, land use implications. Real-time calibration
is theoretically limited by the historic precedence of events within an input dataset and in the
context of rich datasets, data sources such as location device data have only been in existence
for 10 years. Despite these challenges, the use of a running, continuous methodology will only
become more valuable as time passes. The recent success of AI and specifically neural-net
methodologies offers significant opportunities as method for deriving new heuristics within
an agent based model. However, the transparency of such methodologies and the downstream
impacts these have on model validation are profound as the complexity of such a model becomes
increasingly likely to be unintuitive. The standard model validation techniques for transport
planning such as link counts and journey times are increasingly becoming inappropriate and
the need to use potentially extremely intrusive individual level validation metrics poses ethical
challenges which are not insignificant.

6.4.2 Model Inter-modality

Cycling, walking etc may be represented by constraining road network by type and using
more representative edge weights. Connecting these modes is a separate challenge. A true
inter-modal graph enables a series of cross routes, which cannot be represented by distinct
layers, for example the user of ride sharing technologies (such as Uber) to solve first and last
mile challenges to public transport services. The modelling of the transportation network as a
truly inter-modal graph also offers the opportunity of removing the entire modal choice step
from modelling. A modal choice is computed as part of the optimum path across the graph,
dependent on the input heuristics relating to what is valued and how (journey time, headways,
wait time etc), rather than being a decision pre-routing. As services become more integrated
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and payment barriers begin to disappear across modes it is likely that our existing notions of
modal definition will begin to be lost. This is generally a positive step, as it should enable for
areas which are not well served by public transport to be served in a more integrated fashion
with services by companies such as Uber and Lyft.

However, in the context of the computational challenge posed by graph algorithms discussed
in Chapter 4 and graphically illustrated in Figure 6.3 this poses a significant challenge. The
separate computation of public transport and other graphs enables for the graph to be simplified
and also aids speed by enabling this to be done in parallel. The transition from a multi-modal
to inter-modal graph means an order of magnitude change in the complexity of the computation
required, with no ability to do this in parallel. Despite this, the potential value is enormous in
terms of enabling questions surrounding the use of AVs and rideshare technologies to serve
first and last mile connectivity issues. It is a significant barrier which transport modelling must
overcome in order for the binary public transport, driving models of the past to be able to
handle mobility as a service use cases where a given user may use various different systems
multiple times of a day as is beginning to manifest in reality.

In terms of meaningful research avenues forward for reducing graph computation times,
there are 3 distinct options:

1. Algorithmic optimisation. The use of Fibonacci and Binary heaps with Dijkstra has
shown significant value, as has highway hierarchies (Sanders and Schultes, 2006a), goal
direction, tesselation, seperators, bidirectional search and transit node routing (Sanders
and Schultes, 2006b) methodologies.

2. Vertical scaling. Although recent trends have pushed towards horizontal MapReduce’esque
methodologies for "big-data" workloads, vertical scaling through the use of faster hard-
ware remains a legitimate option.

3. Graphical Processing Units (GPUs).

6.4.3 Public transport

Presently there is no crowding feedback mechanism within the ABM. Context specific volume
delay functions have been used as the mechanism to permit feedback between agents in different
time steps on the road network. In the case of public transport, the presented implementation
did not feature the ability to generate congestion on public transport modes. The first challenge
to this is the technical barriers relating to handling the data volume. The scalable nature of
the proposed framework and the exhibited performance shown in Chapter 4 shows sufficient
capacity to handle this. However, the data load poses challenges for operators such as TfL who
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may struggle to share the data in a timely and meaningful way as they do not have the tools to
do so. Secondly, the institutional and regulatory challenges relating to accessing of such data
with significant privacy concerns is an evolving challenge.
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Appendix A

Geospatial conflation - polyline to
underlying graph

A significant technical challenge is presented when attempting to unify two similar but different
geospatial references. Google’s API responses return geospatial coordinates specific to their
underlying representation of London. This is most obviously different from the ITN representa-
tion in that it is using a different coordinate projection system1. Beyond the relatively simple
task of re-projection, there is the challenge of unifying different geospatial representations of
the same infrastructure. Consider Figure A.1 which presents a Google polyline overlaying the
ITN road graph. The dark blue polyline illustrates the Google Directions API result and the
grey illustrates the underlying ITN network. As is visually clear, there are small discrepancies
between Google and ITN’s underlying graphs. It is necessary to reconcile this two differing rep-
resentations of the same physical infrastructure in order to transfer attributes from the Google
data (journey times) to the ITN graph. The reconciliation process for differing geospatial data
is known as conflation. It is apparent in this case that the light blue ITN polyline is the ITN
equivalent of the Google polyline result shown. However, a programmatic method for this
process is required due to the size of the Google and ITN datasets.

A.1 Google Directions API data

An individual API response consists of a series of individual legs with associated journey times.
This is presented in Figure A.2. The one to many relationship of API route to legs is shown in
Figure A.3.

1Google use epsg:4326 and the ITN uses epsg:27700
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Fig. A.1 Geospatial differences: Google versus ITN

Fig. A.2 Example Google Directions API response
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Fig. A.3 API response and legs
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The journey time and encoded polyline are harvested from each response. The raw polyline,
consisting of a series of coordinates is compressed using a lossy compression algorithm
producing a single string representation (Google, 2017). To decrease space even more, Google
offset from the previous point, rather than constructing from scratch. This must be considered
when individually assessing an individual polyline from a given Google result.

1. Inherit previous point if not first polyline in route

2. Decode polyline

3. Re-project points within polyline

4. Output polyline and associated journey time

A.2 Data conflation

The ITN consists of 772983 edges and 343724 vertices. The dataset generated in Chapter 3 con-
sisted of 64,528,506 individual leg records. It is therefore necessary to consider computational
efficiency in the conflation process. Conflation is a feature provided by GIS software platforms
such as QGIS. However, as was identified previously, these platforms are designed for large
centralised computations on centralised data structures. Thus, due to the size of the data here
and the non-standard JSON format employed, an implementation in Python was devised. This
a batch kd-tree Python implementation inspired by the quadtree implementation devised in
the Sierra-Charlie visualiser (Bak et al., 2016). A kdtree is a hierarchical data structure which
is useful for focussing computational effort on the interesting part of the problem (Bentley,
1975). The kd tree can be queried to find those vertices within the vicinity of a returned Google
polyline. From these available vertices, a shortest path computation can be carried out, with
vertices weighted dependent on vicinity,

Conflation process:

1. Check response status of API response (discard if there are errors)

2. Decode, re-project and reformat Google polyline

3. Decompose Google polyline into constituent, atomic polyline

4. For each atomic polyline:

5. Create list of vertices near all of the given vertices with a polyline (10m)
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6. Find start and end vertices of Google polyline, match to nearest ITN vertices

7. Add additional (midpoint) points to Google polyline where there is a section longer than
100m

8. Find any ITN vertices within a 50m buffer around each point of the Google polyline

9. Find any ITN vertices within a 200m buffer around the origin and destination points

10. Build localised graph for these possible vertices

11. Find shortest path between these ITN vertices

12. Attribute journey time from Google polyline to ITN polylines proportionally to length

Stage 3 requires the use of the recursive data structure to ensure that the results are computed
in an efficient matter.

Since each polyline may be computed in isolation, this is a straightforward process to
parallelise.

A.2.1 Output

A.2.2 Success & confidence

Figure A.5 presents the percentage error between matched edge(s) and the API response, acting
as a proxy for the error. As is shown, the vast majority of responses have a single percentage
point discrepency.

A.3 Future work

Presently, this method matches a polyline to the nearest whole polyline. In the event of a
Directions API response commencing or finishing mid ITN polyline, the data is generalised
across the entire edge. A method for attributing costs proportionally across appropriate edges
is an obvious next step.
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Fig. A.4 Sample output of polyline geospatial conflation
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Fig. A.5 Matched polyline versus input polyline length error probability density function
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