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ABSTRACT 1 
This paper presents a framework for using real-time big-data to inform a transport Agent Based 2 
Model (ABM) for a range of scenario testing applications. Computational advances have enabled 3 
for increasingly complex, bottom-up, fine resolution simulations to be carried out over long time 4 
horizons at fine spatial and temporal resolution. This has hinted at the possibility of connecting 5 
scales of what has been historically been fine resolution operational models and coarse resolution 6 
strategic models. The value of any fine resolution dynamic model is limited by the quality of its 7 
inputs. The wave of new geospatially connected devices has enabled the harvesting of fine 8 
resolution spatial and temporal data on travellers’ and even the infrastructure itself. This crowd-9 
sourced data can be used to inform dynamic models with real-world and real-time data, 10 
bypassing the need for generalised functions and/or expensive survey data. In this paper, Google 11 
Directions API data and Transport for London data feeds are presented in a framework for 12 
London. The use of decentralised data structures is also presented and comment is made on the 13 
possibilities of using parallel computing advances in Computer Science to scaling up fine 14 
resolution scenario testing transportation models and enabling support for a range of agent 15 
decision making methodologies. Such data structures offer performance improvements in the 16 
storing of dynamic data that may be manipulated in order to simulate local and global hard 17 
infrastructure scenarios alone or in tandem with traditional policy or dynamic policy making 18 
scenarios.  19 
 20 
 21 
 22 
 23 
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INTRODUCTION 1 
 2 
Historically, transport planners have made use of top-down macro-economic models that treat 3 
transport modes as distinct. These models were informed with static averaged inputs from 4 
standardised functions or limited survey data. 5 
 6 
In recent years two profound changes have occurred. First, computational advances have enabled 7 
for complex, bottom-up, fine resolution simulations to be carried out over long time frames. 8 
Although the theoretical foundation for such dynamic models has existed for many years (2, 3, 9 
26,34) it has not been possible to implement them in a useful fashion until relatively recently. 10 
Secondly, the same computational revolution has created a network of geospatially connected 11 
devices which has enabled the harvesting of fine resolution spatial and temporal data on 12 
travellers’ and even the infrastructure itself. This crowd-sourced data can be used to inform 13 
dynamic models with real-world and real-time data, bypassing the need for generalised functions 14 
and/or expensive survey data. 15 
  16 
This paper proposes a framework which consists of a multi-modal agent based model which can 17 
be used for a range of scenario testing exercises. These may be hard infrastructure changes or 18 
policy changes. The agent based model makes use of a large repository of spatially and 19 
temporally dynamic data in order to provide real-world inputs. 20 
 21 
An overview of the current models and approaches is first given. This discusses the backdrop to 22 
the emergence of bottom up dynamic models and the advent of crowd-sourced big data model 23 
inputs. If and how a traveller uses such information in their decision making follows. The use of 24 
a complex model with a large repository of input data can lead to large computational demand 25 
and thus scaling of this framework is discussed and finally a summary of the framework 26 
presented in this manuscript is given. 27 
 28 
OVERVIEW OF MODELS & APPROACHES 29 
 30 
Agent Based Modelling 31 
Agent based modelling (ABM) has emerged as a means of dynamically simulating complex 32 
systems in a bottom up, stochastic method, rather than a deterministic top down method as has 33 
traditionally been advocated. The basic principle of an ABM is that discrete agents with distinct 34 
behaviours interact to bring out macro behaviour (25,26).  A dynamic simulation can allow for 35 
the system processes analysed at the level of their constituent elements (7) and thus can permit a 36 
better understanding of the agents involved, their stochastic and heterogeneous attributes, and 37 
how their complex interactions lead to exhibited macro level behaviour (14). Recent advances in 38 
computational capacity have enabled more complex, dynamic simulations to be possible (1). 39 
 40 
Model Inputs 41 
In order to reflect real-world conditions accurate model inputs must be provided. Transport 42 
networks are complex and offer a multitude of options, via many different transport modes, for 43 
travelling to and from any location. The network varies considerably relative to spatial location, 44 
with some areas being well connected to the rest of the network and other areas considerably less 45 
so. Such connectivity may be defined as an output from the minimum cost route between the 46 
origin and destination. Generally, this minimum cost is defined as a combination of the monetary 47 
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and non-monetary costs of this journey. A given traveller may make their travel decision based 1 
upon a range of different network related metrics and attribute weights to those metrics in a 2 
simplistic or complex fashion. For example, the value attribution of different modal time weights 3 
may differ, with waiting times discounted more than in transit times (13). Such discounts may be 4 
dependent on the socio-economic status of the traveller, the time of day, the travellers’ role or 5 
even the weather at the time of travel (4). This section begins by explaining how metrics have 6 
historically been quantified for the transport network.   7 
 8 
Road Network 9 
Harvesting road vehicle related data for all roads has historically been prohibitively expensive 10 
and often standardised functions of sample roads are used to find suitable values (27, 20). 11 
Geospatial data such as road length, lane count, road type and survey data such as traffic counts 12 
has enabled the use of generalised functions such as bimodal journey time functions (19) and 13 
volume-delay functions in order to estimate likely road attributes. Such functions are derived 14 
from limited, old and extremely context specific studies resulting in a limited empirical evidence 15 
base which is increasingly far removed from the modern context (24,29). Traffic counts are often 16 
converted to Annual Average Daily Flows (AADFs) carried out over short periods and averaged 17 
over long periods (30), offering a limited snapshot and little in the way of temporal distribution. 18 
 19 
These functions attempt to generalise different aspects of a roads characteristics in order to create 20 
general functions without the need for input surveys. However, in doing so their ability to give 21 
outputs that consider the context specific nature of of a given road reduces. Such differing 22 
characteristics can result in very different vehicular behaviour on roads that may be considered 23 
similar by these functions (6). 24 
 25 
Public Transport Network 26 
Public transport timetables provide a centralised resource for quantifying the journey time and 27 
financial cost attributes of public transport services. Public transport services are centrally 28 
coordinated and scheduled in advance in contrast to the decentralised/individual nature of most 29 
car journeys. In the case of cities where a centralised body is responsible for public transport 30 
services it is often possible to access all public transport mode data through one centralised 31 
repository. 32 
 33 
Simplifications are usually employed in order to consider how a traveller may be presented with 34 
a particular service, for example journey times often include half the head time between services 35 
to give a static journey time that considers scheduling (9). Such assumptions negate the 36 
identified impact of different timetables that is known to influence a traveller’s view of a public 37 
transport service (9). It also fails to consider the reliability of services and their tendency to 38 
provide a level of service as is specified in the timetable. Many transport systems in major cities 39 
are stressed at times, often resulting in significant service impacts for travellers’. For illustration 40 
consider the service performance of the London Underground service 41 
(http://tubestatus.net/graph). The result may be highly variable service reliability that can have a 42 
resulting impact on traveller decision making. The difference between planned public transport 43 
services and actual public transport services may have an impact on the robustness of using the 44 
idealised timetable as a model input.  45 
 46 
Summary 47 
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The ability of any model to accurately reflect a real-world decision is dependent on the inputs it 1 
is provided. In the case of road and public transport journeys it is well known than context 2 
specific road conditions and timetables lead to highly time dependent journey times that 3 
travellers, are to varying degrees, aware of (9).  4 
 5 
Despite this, transport models have historically used static, one-point inputs, such as traffic 6 
counts for one day, on one discrete part of a large network (8). Therefore, such methods are 7 
unable to capture information at the granularity or at the correct scale to accurately quantify how 8 
the transport infrastructure performs over time, both locally and globally. These metrics and their 9 
associated variability/elasticity that control the behaviour of the system are also unknown. 10 
Building and maintaining information on hard infrastructure is extremely time and resource 11 
intensive and yet it would be a relatively simple task in comparison to building the same for 12 
temporal information such as that caused by traffic congestion, which can fluctuate minute by 13 
minute (33). Capturing such temporal variations were a key consideration of this research and a 14 
range of different data sources were investigated. 15 
 16 
MODEL INPUTS 17 
 18 
In the case of London there is a road network, with varying road types, a rail network, with 19 
Overground and Underground services, the tram network and even river boat network. Each of 20 
these individual networks can be considered as a graph with individual properties and 21 
behaviours. A graph is an abstraction of the network in reality in the form of linked vertices. It is 22 
possible to transfer between different graphs at defined points, for example a traveller may move 23 
from the road network to the rail network at a train station. The result is a multi-layered transport 24 
graph. 25 
 26 
Model Inputs 27 
 28 
Fundamentally, the framework supports three distinct types of geospatial data: 29 
 30 

• Point data 31 
• Line data 32 
• Polygon data 33 

 34 
Point (vertex, node) and line (edge, link) data collectively form a graph. This geospatial data is 35 
either temporally static (e.g. road length) or temporally dynamic (e.g. journey time). Figure 1 36 
illustrates these data types and provides illustrative examples.   37 
 38 
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 1 
FIGURE 1 Data types 2 
 3 
Graph Permissions 4 
In order to manage the differing attributes of different services it is necessary to stipulate a 5 
hierarchy of graph types with common attributes. These attributes specify basic properties of 6 
each graph and ensure that only permitted agents are able to utilise different graphs. 7 
 8 
Road Graph 9 
The UK Ordnance Survey (OS) Integrated Transport Network (ITN) (22) was used as the base 10 
map for the road network. Postcode, street name, administrative areas etc. were taken from the 11 
Google Geocode API & OS ITN, elevation data from the Google Elevation API and 12 
socioeconomic metrics from census data from the Office of National Statistics (21) and land use 13 
from the ONS. 14 
 15 
Public Transport Graph 16 
A public transport network was constructed by combining separate rail (overground, tram, 17 
underground and National Rail) shapefiles into one connected graph. Interchange times between 18 
platforms within stations and other walking aspects of the public transport network are included. 19 
 20 
Temporal data 21 
This section covers the data which changes with time, for example link journey times. 22 
 23 
Road Graph 24 
Journey times on the road network in most major cities can be highly variable. GPS enabled 25 
mobile phones have enabled the harvesting of real-time empirical travel data, most especially in 26 
areas of high population density such as cities (11,23). Rather than using coefficient based 27 
generalised functions, real-time queries can be made over long periods of time, creating a 28 
historical database from which trends can be analysed. There are a range of providers who 29 
provide shortest path directions as a service, for example Apple, Bing, TomTom and Google. 30 
Generally, these services are targeted at users who wish to make a route choice or a modal choice 31 
for a given route or routes. The aim here was not to make use of the specialised shortest path 32 
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algorithms or large-scale computational power of these service providers but rather to access 1 
GPS informed journey times.  2 
 3 
This research made use of the driving side of the Google Directions Application Program 4 
Interface (API) (15) to harvest GPS informed journey times for all roads in the Greater London 5 
Area. The Google Directions API is a service that calculates directions between locations using a 6 
Hypertext Transfer Protocol (HTTP) request. This HTTP request can be formulated to poll at any 7 
given temporal resolution for any given origin and destination pairs, limited only by usage 8 
restrictions. In this case, an array of origin and destination pairs covering all of London were 9 
queried at 2 hour intervals (from 6am to 10pm) over a complete period of 2 months. Geographic 10 
output zone data was used to build this OD matrix. 11 

 12 
FIGURE 2 Journey time distributions over one week, Buckingham Palace Rd, London (4) 13 
 14 
Figure 2 presents a graphical demonstration of the dynamic distribution of journey times on one 15 
sample road in London, in both directions over a period of one week. It is clear that the 16 
northbound (towards city centre) lane experiences the greatest increase in journey times in the 17 
mornings and the southbound lane experiences the opposite pattern of lower journey times in the 18 
mornings and longer journey times in the evenings. The weekly distribution also shows that no 19 
day is identical, with each day exhibiting a unique footprint. Friday shows a distinctive inverse 20 
of the other week days with the out bound lane demonstrating the highest journey times all week. 21 
Saturday and Sunday display a different trend to weekdays with the peak increases occurring in 22 
the outbound direction rather than the inbound direction which occurs on weekdays (6).  23 
 24 
Due to the (legitimate) tendency for routes favoring main roads it is necessary to employ an 25 
iterative approach to achieve sufficient coverage of the graph with Google Directions API data. 26 
This requires the requests process to be informed of locations on the underlying graph that have 27 
either little or no temporal data in order for it to edit future requests to capture these locations. 28 
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After a period of iterative requests, it will likely be observed that some areas remain 1 
unpopulated. This is generally areas of either very low usage (thus no GPS data is available) or 2 
areas with poor reception (thus GPS signal is not available). In these cases, the travel time 3 
distributions from similar road types can be used to plug the gap. It is likely such areas of poor 4 
real-time data coverage will be of little strategic importance yet care must still be taken to assess 5 
the proportion of real-data to synthetic data in the underlying model. An iterative approach was 6 
deemed the most appropriate method for solving the coverage issue in order for this method to be 7 
used with other data providers and in other locations. 8 
  9 

  10 
FIGURE 3 Resolving ITN Network with overlaid Google Directions API data 11 
 12 
At this point, it is now possible to take journey times from the Google Directions API result and 13 
pass these journey times as attributes to the underlying ITN graph. Beyond graph coverage, there 14 
is also the issue of resolving the difference between Google’s graph and that of the ITN. 15 
Consider Figure 3 which presents a portion of the ITN graph and a Google Directions API 16 
request polyline which intersects this area. The dark blue polyline illustrates the Google 17 
Directions API result and the grey illustrates the underlying ITN network. As is visually clear, 18 
there are small discrepancies between Google and ITN’s underlying graphs. It is necessary to 19 
reconcile this two differing representations of the same physical infrastructure in order to transfer 20 
attributes from the Google data (journey times) to the ITN graph. A method using a shortest 21 
distance path implementation with weights relative to vertex proximity was employed. A quad 22 
tree data structure was also employed for computational efficiency. The result is the light blue 23 
polyline in Figure 3. Thus, as a batch process the attributes from the Google data can be matched 24 
to the underlying ITN graph and at this point the journey time attributes can be transferred from 25 
the Google result to the appropriate ITN edge. 26 
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 1 

 2 
FIGURE 4 Visualisation of journey times in web browser interface at midday 10/23/2015. 3 
Red indicates an increase in journey times and green indicates a lower journey time 4 
relative to free flow journey time. The image on the left displays a macro view of London. 5 
The inset is a micro view of the area of Southbank and Newington.  6 
 7 
The result is a road graph populated with temporally dynamic journey times as is visualised in 8 
Figure 4. Other attributes may be derived from these journey time attributes. For example, 9 
estimated financial costs, vehicle counts and emissions. Again, different methodologies are 10 
supported. A financial cost which considers a wide remit, for example capital costs, insurance, 11 
maintenance or a simple distance based fuel consumption cost can be specified. It is possible to 12 
manipulate a driving journey to model a taxi service. The financial attribute for a route utilising a 13 
personal car may consider some capital costs, a distance based fuel cost plus associated parking. 14 
The same route may be modelled as a taxi route using a known distance/time cost methodology. 15 
Thus, the road graph attributes can be levered to simulate varying types of road graph services.   16 
 17 
These journey time attributes can also be used in order to make estimations of vehicle volume on 18 
the road using a context specific volume delay function (6). Emission models that consider GPS 19 
informed vehicle speeds, counts and road gradient are also possible. 20 
 21 
The road graph also supports modes beyond that of personal car and taxi. The same 22 
infrastructure supports walking and cycling modes, with type restrictions. These modes are 23 
treated as temporally static, that is to say journey times on a link do not change, thus for a given 24 
origin and destination a fixed route will be outputted. Again, a variety of financial cost 25 
methodologies can be employed to estimate the attributes of such journeys. Public transport 26 
paths often really heavily on road infrastructure for moving between the different graphs. This 27 
may be from train to bus, from car to tram and so on. 28 
 29 
Public Transport Graph 30 
In contrast to the individual nature of car journeys, public transport services are centrally 31 
managed and scheduled. Thus, the quantification of journey times on public transport 32 
infrastructure is simpler to harvest but more complex in nature to store as there is the the added 33 
complexity of different services with different departure times, routes and journey times. It is 34 
only possible to use a public transport service at specified departure times and on specified 35 
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routes.  1 
 2 
In this proof of concept, a weekly schedule was combined with real-time feeds. The weekly 3 
schedule sets the planned service schedule for the coming week. The real-time feeds are then 4 
used to quantify when, where and how this schedule was changed as a result of 5 
planned/unplanned incidents. Unique Association of Train Operating Companies (ATOC) codes 6 
are used to match the timetable and real-time feeds to the underlying graph. The unique nature of 7 
ATOC codes sidesteps the need to perform geospatial computations. In the case of London, a 8 
cost matrix was constructed from published pricing (32). In some cities a journey planner outputs 9 
pricing information in tandem with a route.  10 
 11 
Storing data 12 
Capturing fine spatial and temporal resolution data poses a significant computational challenge. 13 
As such the use of a standard GIS database was insufficient and alternative methods were 14 
employed. This section will discuss the format of the data and the section on Scaling will explain 15 
the reasoning behind this decision.  16 
 17 
In order for a decision making methodology to be employed the agent based model must be able 18 
to access the relevant spatial and temporal data to present a given agent. This primarily makes 19 
use of a light weight data interchange form JavaScript Object Notation (JSON). JSON is built on 20 
two structures, first a collection of name/pair values and secondly an ordered list of values (16).  21 
 22 
The foundation of a graph is the vertex and edge data. Polygon data is used to hold some 23 
attributes but is not required to form a graph. For efficiency, the fundamental spatial data is 24 
separated from the attributes, resulting in four files types: vertices, vertex attributes, edges and 25 
edge attributes. Two example records are presented: 26 
 27 
road_vertices:  28 

{“group”: 1, 29 
"toid":"osgb4000000031043205", 30 
"point":[508180.748,195333.973], 31 
"index":1} 32 
 33 

road_vertex_attributes: 34 
{"toid":"osgb4000000031043205", 35 
"house_no":6,  36 
“street”: “Hazelbank”,  37 
“locality”:"Croxley Green”,  38 
“administrative_area”: “Rickmansworth”,  39 
“county” : “Hertfordshire”,  40 
“post_code” : “WD3 3EB”, 41 
”country”: “UK",  42 
“elevation” : 58.424} 43 

 44 
road_edges: 45 

{"group”: 1, 46 
“negativeNode":"osgb4000000023183407", 47 
"toid":"osgb4000000023296573", 48 
"term":"Private Road - Restricted Access", 49 
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"polyline": 1 
[492019.481,156567.076…492126.5,156602], 2 
"positiveNode":"osgb4000000023183409", 3 
"index":1, 4 
"nature":"Single Carriageway"} 5 
 6 

roads: 7 
{"group":"Named Road", 8 
"members": 9 
["osgb5000005107792171","osgb4000000023464890"],"toid":"osgb4000000023708569", 10 
"name":"DAPHNE JACKSON ROAD", 11 
"index":1} 12 

 13 
Computing Minimum Cost Path 14 
The minimum cost or shortest path route problem is defined as the process of identifying the 15 
lowest cost route from an origin to a destination usually in terms of distance, journey time or by 16 
a combination of graph edge attributes (such as generalised cost (9)). The minimum cost path 17 
involves a behavioural decision on human value judgment and this framework seeks to support a 18 
range of systems rather than pre-prescribe one.  19 
 20 
A large amount of literature exists in the fields of routing and scheduling problems. Significant 21 
developments have occurred since Dijkstra presented his path finding algorithm in 1959 (12). A 22 
range of algorithms (10, 28) and software packages may now be taken off the shelf for a range of 23 
graph problems. A transport network is generally a directed, weighted, sparse, embedded, 24 
explicit and labelled graph. A public transport graph features a further consideration of time 25 
constraints (28).  26 
 27 
There is a large body of academic work which has paired psychological insights to economic 28 
analysis in order to better understand human decision making. This is commonly referred to as 29 
behavioural economics. Within transportation, discrete choice methods have been primarily used 30 
to model how an agent makes a decision from a number of discrete alternatives (5). It is not the 31 
purpose of this framework to pre-define a decision making framework for the modeller but rather 32 
to provide a flexible platform where a range of different decision-making methodologies can be 33 
supported. As such, this framework focusses on providing relevant input data in a useful and 34 
accessible format in order for simple and complex decision making rules to be used. 35 
 36 
A general implementation may consider public transportation as bus, rail (all types) and walking, 37 
personal vehicle and taxi as road graphs (with different financial attributes) and walking/cycling 38 
as road graphs (with type restrictions).  39 
 40 
Computing the shortest path for walking and cycling is simple as they are deemed to have no 41 
temporal variations. Driving features a large complex graph with temporally dependent edge 42 
journey times, directionally restrictions, pricing dependent on mode and agent feedback. Public 43 
transport is considerably more complex due to timetabling, variable service routes and a truly 44 
multi-modal nature resulting in a series of sub graphs. The walking sub graph on the road 45 
network connects rail stations, bus stops and stations have internal subgraphs to connect different 46 
platforms and services. Except in the case of public transport, the shortest path may be simply 47 
defined as that with the minimum journey time for the modal options model input. For public 48 
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transport, weight may also be put on the non-time costs of changing services. For example, a 1 
time of saving of 2 minutes in exchange of an extra 2 bus changes will usually be deemed 2 
undesirable. Each of these lowest cost paths is then presented to the traveller in order for a 3 
decision to be computed. 4 
 5 
AGENT DECISION MAKING 6 
 7 
Agent Logic 8 
Consider a generalised cost methodology where a traveller considers their options in terms of 9 
their individual time cost and financial cost. The transport graph presents three modal options, 10 
each with their own financial and time cost attributes. Based upon the agent’s weight attribution 11 
to financial cost (a) and time cost (b), a generalised cost (g.c) may be computed for each option. 12 
The agent may then select the lowest generalised cost combination. 13 
 14 

g.c = a(financial_cost) + b(time_cost)     (1) 15 
 16 
It is possible for an agent to give weighted value attribution to time costs dependent on type. For 17 
example, one-minute waiting time may be discounted differently in comparison to one-minute in 18 
transit as a result of differences in time perception (13). A traveller’s option is given with type 19 
disaggregation and thus a weight a may be attributed to the transit time and a weight b (where b 20 
equals a multiple of a) may be attributed to the waiting time when computing the generalised 21 
cost.  22 
 23 

g.c = a(train_time) + b(waiting_time) + c(financial_cost)   (2) 24 
 25 
This may be made even more complex, with other factors, such as weather being included. 26 
Walking during precipitation can be weighed heavily. This has been investigated by using Met 27 
Office NIMROD (17) precipitation data as a polygon data input. Consider a situation where two 28 
options are posed to a traveller. Option1 features two walking sections with a bus in-between. 29 
The second features a taxi with no perceivable walk.  30 
 31 
Option1 32 

g.c. = a(walking_time) + b(bus_time) + c(financial_cost)   (3) 33 
 34 
Option2 35 

g.c = y(taxi_time) + z(financial_cost)    (4) 36 
 37 
Where rain is present, the increase in perceived cost of walking (a) may outweigh the larger 38 
financial cost of the taxi.   39 
 40 
With rain: 41 
 42 
 Option1 > Option2      (5) 43 
 44 
Conversely, without rain the increased cost of a taxi outweighs the now reduced non-monetary 45 
cost of walking (a).  46 
 47 
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Without rain: 1 
 2 
 Option1 < Option2      (6) 3 
 4 
Further complexity could be added by considering a taxi pricing structure which considers 5 
supply and demand, such as Uber or Lyft. The increased demand during rain may lead to a 6 
pricing tipping point that may even then result in a public transport route with a heavily weighted 7 
walking section.  8 
 9 
Other metrics that have been investigated include: 10 
 11 
• Weight attributions 12 

The discount a traveller attributes to different metrics ay be highly context specific and depend 13 
on the environment, role of the traveller and the traveller themselves at the time of the decision. 14 
It is possible to adjust this weight with respect to factors such as work vs no work travel, journey 15 
distance, travel during weather events etc. 16 
 17 
• Spatial information horizon 18 

Travellers may be presented with a spatial limit to their knowledge of the system. This may be 19 
used to test the impact of different information strategies for public transport (smart phone versus 20 
station focussed) and the efficiencies a centrally coordinated autonomous vehicle fleet could 21 
achieve.  22 
 23 
• Temporal information horizon 24 

Travellers may be presented with a temporal limit to their knowledge of the system. This may be 25 
used to differentiate between an experienced traveller (or smart phone user) and that of a 26 
traveller with no historical awareness, such as a tourist. This may manifest itself in a statistical 27 
metric, such as the standard deviation of journey times on a given route over a defined time 28 
period. This would enable a highly variable road journey or unreliable public transport service to 29 
be considered in terms of a risk through the traveller’s decision making.  30 
 31 
Both temporal and spatial information horizons offer the opportunity to model in-route decision 32 
making. Thus, a traveller may decide to alter their route in response to incoming information 33 
rather than simply following a one time, static decision for the duration of travel.  34 
 35 
Agent Feedback 36 
A key aspect of an ABM is the interactions of individual agents. In order for this to occur there 37 
must be feedback between travellers. This is achieved by considering the impact of current 38 
travellers on future travellers. 39 
 40 
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For vehicular travel on the road graph this can be modelled in terms of an increase or decrease in 1 
demand. Depending on the ratio of the demand (traffic volume) to supply (road capacity) a travel 2 
time impact may be calculated using context specific volume-delay functions (6). Thus, a route 3 
which is oversubscribed will result in an increase in journey time, potentially leading to a modal 4 
change as a result of a change in the input to the decision making process. This is graphically 5 
illustrated in Figure 5 6 
 7 

FIGURE 5 Agent decision making feedback via volume-delay function on road network 8 
 9 
Feedback on public transport modes requires integration with data feeds that enable the 10 
generation and elapsing of travel demand to supply ratios. In order to do this, real-time smart 11 
card data (such as Oyster/contactless (18)) would be required at a suitable resolution in a timely 12 
manner. 13 
 14 
SCENARIO TESTING 15 
The use of real-time data sources enables the ABM to inform travellers with realistic real-world 16 
data. It is possible to edit these inputs in order to assess the impact of hypothetical changes to the 17 
cities infrastructure. 18 
 19 
Hard Infrastructure Changes 20 
It is possible to edit the underlying graph to reflect a change in the network. A new link with 21 
associated attributes may be added and connected to the existing network. Conversely, links may 22 
be removed in order to see the local and global impact of the change. The availability of 23 
attributes such as elevation data enables climate change related simulations such as flooding/sea 24 
level rises.  25 
 26 
Soft Policy Changes 27 
The underlying graphs have a range of associated geospatial tags such as post codes and 28 
administrative areas. It is therefore possible to apply policies via a range of attributes. 29 
GPS informed journey times allow for the identification of peak congestion allowing for the 30 
possibility of dynamic and targeted congestion taxation rather than geographically static taxation.  31 
 32 
SCALING 33 
The use of fine resolution data results in high computational demands. The emergence of big-34 
data has led to a shift in how data is stored, processed and analysed.  35 
 36 
Decentralized Data Storage 37 
Traditionally spatial data would have been stored in a form of relational database with a 38 
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specialist setup for geospatial data. Such methods have struggled to scale as they do not 1 
inherently support the breaking up of large tasks into smaller sub tasks. In relational databases, 2 
references to other rows and tables are indicated by referring to their (primary) key attributes via 3 
foreign-key columns. In order to compute the interaction between different elements, joins are 4 
computed at query time by matching primary and foreign-keys across many rows of the tables. 5 
These operations are compute and memory-intensive and have an exponential cost. Relational 6 
databases search all of the data looking for anything that meets the search criteria. The larger the 7 
set of data, the longer it takes to find matches, because the database has to examine everything in 8 
the collection. 9 
 10 
JSON is the data structure of the Web. It's a simple data format that allows programmers to store 11 
and communicate sets of values, lists, and key-value mappings across systems. In the present 12 
study, the network data are distributed across multiple JSON data files, which allows for a 13 
decentralised system for querying and data-processing. The distributed data system allows for 14 
easy scalability and load-balancing during computations. 15 
 16 
Parallel Computing with Graphs 17 
Relationships are first class citizens in a graph model. A graph is a data-structure that comprises 18 
of a set of vertices and a set of edges. Edges represents the path or the relationship between two 19 
vertices. There is no need for additional objects to facilitate that relationship. By assembling the 20 
simple abstractions of vertices and relationships into connected structures, graph databases 21 
enable us to build sophisticated models that map closely to the problem domain.  22 
 23 
Data parallelism refers to scenarios in which the same operation is performed concurrently on 24 
independent data or elements in a source collection or array across separate resources. In contrast 25 
to data-parallel computation, graph-parallel computation derives parallelism by partitioning the 26 
graph (dependent) data across processing resources and then resolving dependencies (along 27 
edges) through iterative computation and communication (35). Graph processing systems apply 28 
vertex-centric logic to transform data on a graph and exploit the graph structure to 29 
achieve more efficient distributed execution. This form of graph parallel system allows for 30 
scalability of multi-modal modelling of big cities. Graph parallel systems are being explored as a 31 
means to scale and model real-time big data problems at city-scale. 32 
 33 
CONCLUSIONS 34 
A framework has been constructed in such a way so that it can be easily manipulated, can 35 
support multiple different classification systems, is self-building, has a fine granularity/resolution 36 
and allows for hard or soft manipulation. The ABM allows for the macro and micro impacts of 37 
changes to be assessed. Real world empirical data can allow planners to consider how 38 
infrastructure actually performs and not how it was designed to perform. The ABM and 39 
underlying structures have been built in a distributed fashion in order to facilitate scaling and the 40 
use of High Performance Computing (HPC).  41 
 42 
The objective of this paper is to describe the general framework of this methodology. A future 43 
paper will show an application. This case study will feature how High Speed Rail usage has 44 
evolved in the case of HS1 in the UK and what implications this has for low carbon international 45 
travel in this region of Europe. 46 
 47 
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